Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287272092> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4287272092 abstract "The transition away from carbon-based energy sources poses several challenges for the operation of electricity distribution systems. Increasing shares of distributed energy resources (e.g. renewable energy generators, electric vehicles) and internet-connected sensing and control devices (e.g. smart heating and cooling) require new tools to support accurate, datadriven decision making. Modelling the effect of such growing complexity in the electrical grid is possible in principle using state-of-the-art power-power flow models. In practice, the detailed information needed for these physical simulations may be unknown or prohibitively expensive to obtain. Hence, datadriven approaches to power systems modelling, including feedforward neural networks and auto-encoders, have been studied to leverage the increasing availability of sensor data, but have seen limited practical adoption due to lack of transparency and inefficiencies on large-scale problems. Our work addresses this gap by proposing a data- and knowledge-driven probabilistic graphical model for energy systems based on the framework of graph neural networks (GNNs). The model can explicitly factor in domain knowledge, in the form of grid topology or physics constraints, thus resulting in sparser architectures and much smaller parameters dimensionality when compared with traditional machine-learning models with similar accuracy. Results obtained from a real-world smart-grid demonstration project show how the GNN was used to inform grid congestion predictions and market bidding services for a distribution system operator participating in an energy flexibility market." @default.
- W4287272092 created "2022-07-25" @default.
- W4287272092 creator A5023975897 @default.
- W4287272092 creator A5063888848 @default.
- W4287272092 creator A5065474839 @default.
- W4287272092 creator A5069269028 @default.
- W4287272092 creator A5086267750 @default.
- W4287272092 date "2021-03-12" @default.
- W4287272092 modified "2023-09-26" @default.
- W4287272092 title "Knowledge- and Data-driven Services for Energy Systems using Graph Neural Networks" @default.
- W4287272092 doi "https://doi.org/10.48550/arxiv.2103.07248" @default.
- W4287272092 hasPublicationYear "2021" @default.
- W4287272092 type Work @default.
- W4287272092 citedByCount "0" @default.
- W4287272092 crossrefType "posted-content" @default.
- W4287272092 hasAuthorship W4287272092A5023975897 @default.
- W4287272092 hasAuthorship W4287272092A5063888848 @default.
- W4287272092 hasAuthorship W4287272092A5065474839 @default.
- W4287272092 hasAuthorship W4287272092A5069269028 @default.
- W4287272092 hasAuthorship W4287272092A5086267750 @default.
- W4287272092 hasBestOaLocation W42872720921 @default.
- W4287272092 hasConcept C10558101 @default.
- W4287272092 hasConcept C119599485 @default.
- W4287272092 hasConcept C119857082 @default.
- W4287272092 hasConcept C120314980 @default.
- W4287272092 hasConcept C121332964 @default.
- W4287272092 hasConcept C127413603 @default.
- W4287272092 hasConcept C13736549 @default.
- W4287272092 hasConcept C153083717 @default.
- W4287272092 hasConcept C154945302 @default.
- W4287272092 hasConcept C163258240 @default.
- W4287272092 hasConcept C187691185 @default.
- W4287272092 hasConcept C188573790 @default.
- W4287272092 hasConcept C2524010 @default.
- W4287272092 hasConcept C33923547 @default.
- W4287272092 hasConcept C41008148 @default.
- W4287272092 hasConcept C49937458 @default.
- W4287272092 hasConcept C544738498 @default.
- W4287272092 hasConcept C62520636 @default.
- W4287272092 hasConcept C89227174 @default.
- W4287272092 hasConceptScore W4287272092C10558101 @default.
- W4287272092 hasConceptScore W4287272092C119599485 @default.
- W4287272092 hasConceptScore W4287272092C119857082 @default.
- W4287272092 hasConceptScore W4287272092C120314980 @default.
- W4287272092 hasConceptScore W4287272092C121332964 @default.
- W4287272092 hasConceptScore W4287272092C127413603 @default.
- W4287272092 hasConceptScore W4287272092C13736549 @default.
- W4287272092 hasConceptScore W4287272092C153083717 @default.
- W4287272092 hasConceptScore W4287272092C154945302 @default.
- W4287272092 hasConceptScore W4287272092C163258240 @default.
- W4287272092 hasConceptScore W4287272092C187691185 @default.
- W4287272092 hasConceptScore W4287272092C188573790 @default.
- W4287272092 hasConceptScore W4287272092C2524010 @default.
- W4287272092 hasConceptScore W4287272092C33923547 @default.
- W4287272092 hasConceptScore W4287272092C41008148 @default.
- W4287272092 hasConceptScore W4287272092C49937458 @default.
- W4287272092 hasConceptScore W4287272092C544738498 @default.
- W4287272092 hasConceptScore W4287272092C62520636 @default.
- W4287272092 hasConceptScore W4287272092C89227174 @default.
- W4287272092 hasLocation W42872720921 @default.
- W4287272092 hasOpenAccess W4287272092 @default.
- W4287272092 hasPrimaryLocation W42872720921 @default.
- W4287272092 hasRelatedWork W1498845059 @default.
- W4287272092 hasRelatedWork W1596201972 @default.
- W4287272092 hasRelatedWork W1943795333 @default.
- W4287272092 hasRelatedWork W1992517826 @default.
- W4287272092 hasRelatedWork W2126451717 @default.
- W4287272092 hasRelatedWork W2160425906 @default.
- W4287272092 hasRelatedWork W2367503426 @default.
- W4287272092 hasRelatedWork W2380963126 @default.
- W4287272092 hasRelatedWork W2900235865 @default.
- W4287272092 hasRelatedWork W2466597139 @default.
- W4287272092 isParatext "false" @default.
- W4287272092 isRetracted "false" @default.
- W4287272092 workType "article" @default.