Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287284789> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4287284789 abstract "Let $un,$ be a quasi-definite linear functional defined on the space of polynomials $mathbb{P}.$ For such a functional we can define a sequence of monic orthogonal polynomials (SMOP in short) $(P_n)_{ngeq 0},$ which satisfies a three term recurrence relation. Shifting one unity the recurrence coefficient indices given the sequence of associated polynomials of the first kind which are orthogonal with respect to a linear functional denoted by $un^{(1)}$. In the literature two special transformations of the functional $un$ are studied, the canonical Christoffel transformation $widetilde un=(x-c)un$ and the canonical Geronimus transformation $widehat un=frac{un}{(x-c)}+Mdeltan_c$ , where $c$ is a fixed complex number, $M $ is a free parameter and $deltan_c$ is the linear functional defined on $mathbb{P}$ as $prodint{deltan_c,p(x)}=p(c).$ For the Christoffel transformation with SMOP $(widetilde P_n)_{ngeq 0}$, we are interested in analyzing the relation between the linear functionals $ un^{(1)}$ and $widetilde{un}^{(1)}.$ There, the super index denotes the linear functionals associated with the orthogonal polynomial sequences of the first kind $(P_n^{(1)})_{ngeq 0}$ and $(widetilde P_n^{(1)})_{ngeq 0},$ respectively. This problem is also studied for Geronimus transformations. Here we give close relations between their corresponding monic Jacobi matrices by using the LU and UL factorizations. To get this result, we first need to study the relation between $un^{-1}$ (the inverse functional) and $un^{(1)}$ which can be expressed from a quadratic Geronimus transformation." @default.
- W4287284789 created "2022-07-25" @default.
- W4287284789 creator A5028536658 @default.
- W4287284789 creator A5037110170 @default.
- W4287284789 creator A5085654474 @default.
- W4287284789 date "2021-03-03" @default.
- W4287284789 modified "2023-09-27" @default.
- W4287284789 title "Associated orthogonal polynomials of the first kind and Darboux transformations" @default.
- W4287284789 doi "https://doi.org/10.48550/arxiv.2103.02321" @default.
- W4287284789 hasPublicationYear "2021" @default.
- W4287284789 type Work @default.
- W4287284789 citedByCount "0" @default.
- W4287284789 crossrefType "posted-content" @default.
- W4287284789 hasAuthorship W4287284789A5028536658 @default.
- W4287284789 hasAuthorship W4287284789A5037110170 @default.
- W4287284789 hasAuthorship W4287284789A5085654474 @default.
- W4287284789 hasBestOaLocation W42872847891 @default.
- W4287284789 hasConcept C104317684 @default.
- W4287284789 hasConcept C10628310 @default.
- W4287284789 hasConcept C11413529 @default.
- W4287284789 hasConcept C114614502 @default.
- W4287284789 hasConcept C134306372 @default.
- W4287284789 hasConcept C163635466 @default.
- W4287284789 hasConcept C185592680 @default.
- W4287284789 hasConcept C20050597 @default.
- W4287284789 hasConcept C201292218 @default.
- W4287284789 hasConcept C202444582 @default.
- W4287284789 hasConcept C204241405 @default.
- W4287284789 hasConcept C207467116 @default.
- W4287284789 hasConcept C2524010 @default.
- W4287284789 hasConcept C2778112365 @default.
- W4287284789 hasConcept C33923547 @default.
- W4287284789 hasConcept C49766605 @default.
- W4287284789 hasConcept C54355233 @default.
- W4287284789 hasConcept C54940322 @default.
- W4287284789 hasConcept C55493867 @default.
- W4287284789 hasConcept C86803240 @default.
- W4287284789 hasConcept C90119067 @default.
- W4287284789 hasConceptScore W4287284789C104317684 @default.
- W4287284789 hasConceptScore W4287284789C10628310 @default.
- W4287284789 hasConceptScore W4287284789C11413529 @default.
- W4287284789 hasConceptScore W4287284789C114614502 @default.
- W4287284789 hasConceptScore W4287284789C134306372 @default.
- W4287284789 hasConceptScore W4287284789C163635466 @default.
- W4287284789 hasConceptScore W4287284789C185592680 @default.
- W4287284789 hasConceptScore W4287284789C20050597 @default.
- W4287284789 hasConceptScore W4287284789C201292218 @default.
- W4287284789 hasConceptScore W4287284789C202444582 @default.
- W4287284789 hasConceptScore W4287284789C204241405 @default.
- W4287284789 hasConceptScore W4287284789C207467116 @default.
- W4287284789 hasConceptScore W4287284789C2524010 @default.
- W4287284789 hasConceptScore W4287284789C2778112365 @default.
- W4287284789 hasConceptScore W4287284789C33923547 @default.
- W4287284789 hasConceptScore W4287284789C49766605 @default.
- W4287284789 hasConceptScore W4287284789C54355233 @default.
- W4287284789 hasConceptScore W4287284789C54940322 @default.
- W4287284789 hasConceptScore W4287284789C55493867 @default.
- W4287284789 hasConceptScore W4287284789C86803240 @default.
- W4287284789 hasConceptScore W4287284789C90119067 @default.
- W4287284789 hasLocation W42872847891 @default.
- W4287284789 hasOpenAccess W4287284789 @default.
- W4287284789 hasPrimaryLocation W42872847891 @default.
- W4287284789 hasRelatedWork W2027840655 @default.
- W4287284789 hasRelatedWork W2043668975 @default.
- W4287284789 hasRelatedWork W2050668273 @default.
- W4287284789 hasRelatedWork W2060118968 @default.
- W4287284789 hasRelatedWork W2083309777 @default.
- W4287284789 hasRelatedWork W2089370525 @default.
- W4287284789 hasRelatedWork W2130150400 @default.
- W4287284789 hasRelatedWork W3172956720 @default.
- W4287284789 hasRelatedWork W4287284789 @default.
- W4287284789 hasRelatedWork W4322207757 @default.
- W4287284789 isParatext "false" @default.
- W4287284789 isRetracted "false" @default.
- W4287284789 workType "article" @default.