Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287306706> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4287306706 endingPage "2173" @default.
- W4287306706 startingPage "2164" @default.
- W4287306706 abstract "No AccessEngineering NotesDynamic Programming and Model Predictive Control Approach for Autonomous LandingsGiacomo Bonaccorsi, Marco B. Quadrelli and Francesco BraghinGiacomo Bonaccorsi https://orcid.org/0000-0002-2397-3062Polytechnic University of Milan, 20156 Milan, Italy*Ph.D. Candidate, Department of Mechanical Engineering; (Corresponding Author).Search for more papers by this author, Marco B. QuadrelliJet Propulsion Laboratory, California Institute of Technology, Pasadena, 91109 CA†Group Supervisor, Mobility and Robotic Systems. Associate Fellow AIAA.Search for more papers by this author and Francesco BraghinPolytechnic University of Milan, 20156 Milan, Italy‡Full Professor, Department of Mechanical Engineering.Search for more papers by this authorPublished Online:25 Jul 2022https://doi.org/10.2514/1.G006667SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Genta G. and Genta A., “Preliminary Assessment of a Small Robotic Rover for Titan Exploration,” Acta Astronautica, Vol. 68, No. 5, 2011, pp. 556–566. https://doi.org/10.1016/j.actaastro.2010.02.016 Google Scholar[2] Friedlander A. L., “Buoyant Station Mission Concepts for Titan Exploration,” Acta Astronautica, Vol. 14, 1986, pp. 233–242. https://doi.org/10.1016/0094-5765(86)90125-6 CrossrefGoogle Scholar[3] Sanmartín J. and Peláez J., “Planetary Exploration of Saturn Moons Enceladus and Dione,” Acta Astronautica, Vol. 168, March 2020, pp. 200–203. https://doi.org/10.1016/j.actaastro.2019.12.023 CrossrefGoogle Scholar[4] Cheng L., Li H., Wang Z. and Jiang F., “Fast Solution Continuation of Time-Optimal Asteroid Landing Trajectories Using Deep Neural Networks,” Acta Astronautica, Vol. 167, Feb. 2020, pp. 63–72. https://doi.org/10.1016/j.actaastro.2019.11.001 CrossrefGoogle Scholar[5] Zhang Y., Guo Y., Ma G. and Wie B., “Fixed-Time Pinpoint Mars Landing Using Two Sliding-Surface Autonomous Guidance,” Acta Astronautica, Vol. 159, June 2019, pp. 547–563. https://doi.org/10.1016/j.actaastro.2019.01.046 CrossrefGoogle Scholar[6] Zhao J. and Li S., “Mars Atmospheric Entry Trajectory Optimization with Maximum Parachute Deployment Altitude Using Adaptive Mesh Refinement,” Acta Astronautica, Vol. 160, July 2019, pp. 401–413. https://doi.org/10.1016/j.actaastro.2019.03.027 CrossrefGoogle Scholar[7] Joffre E., Zamaro M., Silva N., Marcos A. and Simplício P., “Trajectory Design and Guidance for Landing on Phobos,” Acta Astronautica, Vol. 151, Oct. 2019, pp. 389–400. https://doi.org/10.1016/j.actaastro.2018.06.024 Google Scholar[8] Hernando-Ayuso J., Campagnola S., Yamaguchi T., Ozawa Y. and Ikenaga T., “OMOTENASHI Trajectory Analysis and Design: Landing Phase,” Acta Astronautica, Vol. 156, March 2019, pp. 113–124. https://doi.org/10.1016/j.actaastro.2018.10.017 CrossrefGoogle Scholar[9] Yakimenko O., Precision Aerial Delivery Systems: Modeling, Dynamics, and Control, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2015, Chaps. 5–8. https://doi.org/10.2514/4.101960 Google Scholar[10] Mitchell R. T., “Cassini/Huygens at Saturn and Titan,” Acta Astronautica, Vol. 59, No. 1, 2008, pp. 335–343. https://doi.org/10.1016/j.actaastro.2006.02.040 Google Scholar[11] Garcia-Huerta R. A., González-Jiménez L. E. and Villalon-Turrubiates I. E., “Sensor Fusion Algorithm Using a Model-Based Kalman Filter for the Position and Attitude Estimation of Precision Aerial Delivery Systems,” Sensors, Vol. 20, No. 18, 2020. https://doi.org/10.3390/s20185227 Google Scholar[12] Tezduyar T., Kalro V. and Garrard W., “Parallel Computational Methods for 3D Simulation of a Parafoil with Prescribed Shape Changes,” Parallel Computing, Vol. 23, No. 9, 1997, pp. 1349–1363. https://doi.org/10.1016/S0167-8191(97)00057-4 Google Scholar[13] Tao J., Liang W., Sun Q., Luo S., Chen Z., Tan P. and He Y., “Modeling and Control of a Powered Parafoil in Wind and Rain Environments,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 4, 2017, pp. 1642–1659. https://doi.org/10.1109/TAES.2017.2667838 CrossrefGoogle Scholar[14] Altmann H., “Fluid-Structure Interaction Analysis of an Isolated Ram-Air Parafoil Cell,” AIAA Aviation 2019 Forum, AIAA Paper 2019-3278, 2019. https://doi.org/10.2514/6.2019-3278 Google Scholar[15] Vinh N., Optimal Trajectories in Atmospheric Flight, Studies in Astronautics, Elsevier, New York, Sept. 1981, pp. 449–468. Google Scholar[16] Quadrelli M. B., “Planetary Aeromaneuvering for Precision Landing Using Parafoils,” AAS/AIAA Astrodynamics Specialists Conference, 2005. Google Scholar[17] Jann T., “Aerodynamic Model Identification and GNC Design for the Parafoil-Load System ALEX,” 16th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, AIAA Paper 2001-2015, AIAA, Reston, VA, 2012, pp. 155–165. https://doi.org/10.2514/6.2001-2015 Google Scholar[18] Gockel W., “Case Study 1. Computer Based Modeling and Analysis of a Parafoil-Load Vehicle,” 1997. Google Scholar[19] Mortaloni A., Yakimenko O., Dobrokhodov V. and Howard R., “On the Development of a Six-Degree-of-Freedom Model of a Low-Aspect-Ratio Parafoil Delivery System,” 17th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, AIAA Paper 2003-2105, 2003. https://doi.org/10.2514/6.2003-2105 LinkGoogle Scholar[20] Slegers N. and Costello M., “Model Predictive Control of a Parafoil and Payload System,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 4, 2005, pp. 816–821. https://doi.org/10.2514/1.12251 LinkGoogle Scholar[21] Cacan M. R. and Costello M., “Adaptive Control of Precision Guided Airdrop Systems with Highly Uncertain Dynamics,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 5, 2018, pp. 1025–1035. https://doi.org/10.2514/1.G003039 LinkGoogle Scholar[22] Slegers N. J., “Effects of Canopy-Payload Relative Motion on Control of Autonomous Parafoils,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 1, 2010, pp. 116–125. https://doi.org/10.2514/1.44564 LinkGoogle Scholar[23] Yakimenko O., “On the Development of a Scalable 8-DoF Model for a Generic Parafoil-Payload Delivery System,” 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, AIAA Paper 2005-1665, 2005. https://doi.org/10.2514/6.2005-1665 LinkGoogle Scholar[24] Barrows T., “Multibody Parafoil Model,” 20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, AIAA Paper 2009-2945, 2009. https://doi.org/10.2514/6.2009-2945 Google Scholar[25] Mooij E., Wijnands Q. and Schat B., “9 DOF Parafoil/Payload Simulator Development and Validation,” AIAA Modeling and Simulation Technologies Conference and Exhibit, AIAA Paper 2003-5459, 2003. https://doi.org/10.2514/6.2003-5459 LinkGoogle Scholar[26] Gang Y., “Nine-degree of Freedom Modeling and Flight Dynamic Analysis of Parafoil Aerial Delivery System,” Procedia Engineering, Vol. 99, 2015, pp. 866–872. https://doi.org/10.1016/j.proeng.2014.12.614. Google Scholar[27] Prakash O. and Ananthkrishnan N., “Modeling and simulation of 9-DOF Parafoil-Payload System Flight Dynamics,” AIAA Atmospheric Flight Mechanics Conference and Exhibit, AIAA Paper 2006-6130, 2006. https://doi.org/10.2514/6.2006-6130 LinkGoogle Scholar[28] Slegers N. and Costello M., “Aspects of Control for a Parafoil and Payload System,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 6, 2003, pp. 898–905. https://doi.org/10.2514/2.6933 LinkGoogle Scholar[29] Kaminer I., Pascoal A., Hallberg E. and Silvestre C., “Trajectory Tracking for Autonomous Vehicles: An Integrated Approach to Guidance and Control,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 1, 1998, pp. 29–38. https://doi.org/10.2514/2.4229 LinkGoogle Scholar[30] Leeman A., Preda V., Huertas I. and Bennani S., “Autonomous Parafoil Precision Landing Using Convex Real-Time Optimized Guidance and Control,” CEAS Space Journal, 2022. https://doi.org/10.1007/s12567-021-00406-z Google Scholar[31] Ward M. B., Costello M., Wachlin J., Leon B., Bergeron K. and Noetscher G., “Jumper-Inspired Guidance Logic for Precision Guided Airdrop Systems,” AIAA Aviation 2019 Forum, AIAA Paper 2019-3373, 2019. https://doi.org/10.2514/6.2019-3373 LinkGoogle Scholar[32] Jann T., “Advanced Features for Autonomous Parafoil Guidance, Navigation and Control,” 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, AIAA Paper 2005-1642, 2005. https://doi.org/10.2514/6.2005-1642 LinkGoogle Scholar[33] Cleminson J. R., “Path Planning for Autonomously-Guided Parafoils: A Dynamic Programming Approach,” AIAA Aerodynamic Decelerator Systems (ADS) Conference, AIAA Paper 2013-1346, 2013. https://doi.org/10.2514/6.2013-1346 LinkGoogle Scholar[34] Rogers J. and Slegers N., “Robust Parafoil Terminal Guidance Using Massively Parallel Processing,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 5, 2013, pp. 1336–1345. https://doi.org/10.2514/1.59782 LinkGoogle Scholar[35] Rademacher B. J., Lu P., Strahan A. L. and Cerimele C. J., “In-Flight Trajectory Planning and Guidance for Autonomous Parafoils,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 6, 2009, pp. 1697–1712. https://doi.org/10.2514/1.44862 LinkGoogle Scholar[36] Lorenz R. D., “An engineering model of Titan surface winds for Dragonfly Landed Operations,” Advances in Space Research, Vol. 67, No. 7, 2021, pp. 2219–2230. https://doi.org/10.1016/j.asr.2021.01.023 CrossrefGoogle Scholar[37] De Almeida F., “Waypoint Navigation Using Constrained Infinite Horizon Model Predictive Control,” AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA Paper 2008-6462, 2008. https://doi.org/10.2514/6.2008-6462 LinkGoogle Scholar[38] Medagoda E. D. B. and Gibbens P. W., “Synthetic-Waypoint Guidance Algorithm for Following a Desired Flight Trajectory,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 2, 2010, pp. 601–606. https://doi.org/10.2514/1.46204 LinkGoogle Scholar[39] Kim H. J., Shim D. H. and Sastry S., “Nonlinear Model Predictive Tracking Control for Rotorcraft-Based Unmanned Aerial Vehicles,” Proceedings of the 2002 American Control Conference (IEEE Cat. No. CH37301), Vol. 5, Inst. of Electrical and Electronics Engineers, New York, 2002, pp. 3576–3581. https://doi.org/10.1109/ACC.2002.1024483 Google Scholar[40] Lorenz R. D. and Newman C. E., “Twilight on Ligeia: Implications of Communications Geometry and Seasonal Winds for Exploring Titan’s Seasonal Winds for Exploring Titan’s Seas 2020–2040,” Advances in Space Research, Vol. 56, No. 1, 2015, pp. 190–204. https://doi.org/10.1016/j.asr.2015.03.034 CrossrefGoogle Scholar[41] Rimani J., High Lift Systems for Planetary Descent and Landing, Master Thesis, Politecnico di Torino. Corso Duca degli Abruzzi, Torino, Italy, Oct. 2018. Google Scholar[42] Lissaman P. and Brown G., “Apparent Mass Effects on Parafoil Dynamics,” Aerospace Design Conference, AIAA Paper 1993-1236, 1993. https://doi.org/10.2514/6.1993-1236 LinkGoogle Scholar[43] Slegers N., Beyer E. and Costello M., “Use of Variable Incidence Angle for Glide Slope Control of Autonomous Parafoils,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 3, 2008, pp. 585–596. https://doi.org/10.2514/1.32099 LinkGoogle Scholar[44] Brown G. and Benney R., “Precision Aerial Delivery Systems in a Tactical Environment,” 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar, AIAA Paper 2005-1645, 2005. https://doi.org/10.2514/6.2005-1645 LinkGoogle Scholar[45] Chiel B. S. and Dever C., “Autonomous Parafoil Guidance in High Winds,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 5, 2015, pp. 963–969. https://doi.org/10.2514/1.G000676 LinkGoogle Scholar[46] Figueroa-González A., Cacciatore F. and Haya-Ramos R., “Landing Guidance Strategy of Space Rider,” Journal of Spacecraft and Rockets, Vol. 58, No. 4, 2021, pp. 1220–1231. https://doi.org/10.2514/1.A34957 LinkGoogle Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 45, Number 11November 2022 CrossmarkInformationCopyright © 2022 by the American Institute of Aeronautics and Astronautics, Inc. Under the copyright claimed herein, the U.S. Government has a royalty-free license to exercise all rights for Governmental purposes. All other rights are reserved by the copyright owner. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAir NavigationControl TheoryDescent GuidanceFeedback ControlGlobal Positioning SystemGuidance and Navigational AlgorithmsGuidance, Navigation, and Control SystemsNavigational GuidanceOptimal Control TheorySatellite Navigation SystemsSpacecraft Guidance and Control KeywordsProportional Integral DerivativeAerodynamic CoefficientsHeading AngleEnergy Management Turn PointsOptimal ControlFluid Structure InteractionAerodynamic PerformanceFeedback ControlSaturnTerrain Relative NavigationAcknowledgmentsGovernment sponsorship acknowledged. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration, during Giacomo Bonaccorsi’s internship sponsored by the JVSRP (JPL Visiting Student Research Program). The authors would like to thank Larry H. Matthies and the late Aaron D. Schutte for the useful technical discussions.PDF Received6 January 2022Accepted13 June 2022Published online25 July 2022" @default.
- W4287306706 created "2022-07-25" @default.
- W4287306706 creator A5013786806 @default.
- W4287306706 creator A5050750282 @default.
- W4287306706 creator A5077972933 @default.
- W4287306706 date "2022-11-01" @default.
- W4287306706 modified "2023-10-14" @default.
- W4287306706 title "Dynamic Programming and Model Predictive Control Approach for Autonomous Landings" @default.
- W4287306706 cites W1970732395 @default.
- W4287306706 cites W1973387263 @default.
- W4287306706 cites W1980427723 @default.
- W4287306706 cites W2001466107 @default.
- W4287306706 cites W2007024640 @default.
- W4287306706 cites W2030357446 @default.
- W4287306706 cites W2038583909 @default.
- W4287306706 cites W2048875826 @default.
- W4287306706 cites W2082481670 @default.
- W4287306706 cites W2098135394 @default.
- W4287306706 cites W2117158393 @default.
- W4287306706 cites W2127052038 @default.
- W4287306706 cites W2137481963 @default.
- W4287306706 cites W2143322381 @default.
- W4287306706 cites W2144284370 @default.
- W4287306706 cites W2145473781 @default.
- W4287306706 cites W2150930292 @default.
- W4287306706 cites W2162258506 @default.
- W4287306706 cites W2170496978 @default.
- W4287306706 cites W2291745973 @default.
- W4287306706 cites W2312816679 @default.
- W4287306706 cites W2325464126 @default.
- W4287306706 cites W2326874215 @default.
- W4287306706 cites W2335357208 @default.
- W4287306706 cites W2588767930 @default.
- W4287306706 cites W2795589131 @default.
- W4287306706 cites W2808962362 @default.
- W4287306706 cites W2896728544 @default.
- W4287306706 cites W2912028368 @default.
- W4287306706 cites W2941191467 @default.
- W4287306706 cites W2953366259 @default.
- W4287306706 cites W2984081715 @default.
- W4287306706 cites W2994867905 @default.
- W4287306706 cites W3121684827 @default.
- W4287306706 cites W3137745687 @default.
- W4287306706 doi "https://doi.org/10.2514/1.g006667" @default.
- W4287306706 hasPublicationYear "2022" @default.
- W4287306706 type Work @default.
- W4287306706 citedByCount "0" @default.
- W4287306706 crossrefType "journal-article" @default.
- W4287306706 hasAuthorship W4287306706A5013786806 @default.
- W4287306706 hasAuthorship W4287306706A5050750282 @default.
- W4287306706 hasAuthorship W4287306706A5077972933 @default.
- W4287306706 hasConcept C11413529 @default.
- W4287306706 hasConcept C127413603 @default.
- W4287306706 hasConcept C133731056 @default.
- W4287306706 hasConcept C154945302 @default.
- W4287306706 hasConcept C172205157 @default.
- W4287306706 hasConcept C2775924081 @default.
- W4287306706 hasConcept C37404715 @default.
- W4287306706 hasConcept C41008148 @default.
- W4287306706 hasConcept C47446073 @default.
- W4287306706 hasConceptScore W4287306706C11413529 @default.
- W4287306706 hasConceptScore W4287306706C127413603 @default.
- W4287306706 hasConceptScore W4287306706C133731056 @default.
- W4287306706 hasConceptScore W4287306706C154945302 @default.
- W4287306706 hasConceptScore W4287306706C172205157 @default.
- W4287306706 hasConceptScore W4287306706C2775924081 @default.
- W4287306706 hasConceptScore W4287306706C37404715 @default.
- W4287306706 hasConceptScore W4287306706C41008148 @default.
- W4287306706 hasConceptScore W4287306706C47446073 @default.
- W4287306706 hasFunder F4320332375 @default.
- W4287306706 hasIssue "11" @default.
- W4287306706 hasLocation W42873067061 @default.
- W4287306706 hasOpenAccess W4287306706 @default.
- W4287306706 hasPrimaryLocation W42873067061 @default.
- W4287306706 hasRelatedWork W194830993 @default.
- W4287306706 hasRelatedWork W2010083262 @default.
- W4287306706 hasRelatedWork W2014376512 @default.
- W4287306706 hasRelatedWork W2017798257 @default.
- W4287306706 hasRelatedWork W2155411861 @default.
- W4287306706 hasRelatedWork W2358702035 @default.
- W4287306706 hasRelatedWork W2391551851 @default.
- W4287306706 hasRelatedWork W2511795889 @default.
- W4287306706 hasRelatedWork W88978760 @default.
- W4287306706 hasRelatedWork W2752447929 @default.
- W4287306706 hasVolume "45" @default.
- W4287306706 isParatext "false" @default.
- W4287306706 isRetracted "false" @default.
- W4287306706 workType "article" @default.