Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287324280> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W4287324280 abstract "3D microscopy is key in the investigation of diverse biological systems, and the ever increasing availability of large datasets demands automatic cell identification methods that not only are accurate, but also can imply the uncertainty in their predictions to inform about potential errors and hence confidence in conclusions using them. While conventional deep learning methods often yield deterministic results, advances in deep Bayesian learning allow for accurate predictions with a probabilistic interpretation in numerous image classification and segmentation tasks. It is however nontrivial to extend such Bayesian methods to cell detection, which requires specialized learning frameworks. In particular, regression of density maps is a popular successful approach for extracting cell coordinates from local peaks in a postprocessing step, which hinders any meaningful probabilistic output. We herein propose a deep learning-based cell detection framework that can operate on large microscopy images and outputs desired probabilistic predictions by (i) integrating Bayesian techniques for the regression of uncertainty-aware density maps, where peak detection can be applied to generate cell proposals, and (ii) learning a mapping from the numerous proposals to a probabilistic space that is calibrated, i.e. accurately represents the chances of a successful prediction. Utilizing such calibrated predictions, we propose a probabilistic spatial analysis with Monte-Carlo sampling. We demonstrate this in revising an existing description of the distribution of a mesenchymal stromal cell type within the bone marrow, where our proposed methods allow us to reveal spatial patterns that are otherwise undetectable. Introducing such probabilistic analysis in quantitative microscopy pipelines will allow for reporting confidence intervals for testing biological hypotheses of spatial distributions." @default.
- W4287324280 created "2022-07-25" @default.
- W4287324280 creator A5016658563 @default.
- W4287324280 creator A5022031011 @default.
- W4287324280 creator A5036633606 @default.
- W4287324280 creator A5053308385 @default.
- W4287324280 date "2021-02-23" @default.
- W4287324280 modified "2023-09-27" @default.
- W4287324280 title "Probabilistic Spatial Analysis in Quantitative Microscopy with Uncertainty-Aware Cell Detection using Deep Bayesian Regression of Density Maps" @default.
- W4287324280 doi "https://doi.org/10.48550/arxiv.2102.11865" @default.
- W4287324280 hasPublicationYear "2021" @default.
- W4287324280 type Work @default.
- W4287324280 citedByCount "0" @default.
- W4287324280 crossrefType "posted-content" @default.
- W4287324280 hasAuthorship W4287324280A5016658563 @default.
- W4287324280 hasAuthorship W4287324280A5022031011 @default.
- W4287324280 hasAuthorship W4287324280A5036633606 @default.
- W4287324280 hasAuthorship W4287324280A5053308385 @default.
- W4287324280 hasBestOaLocation W42873242801 @default.
- W4287324280 hasConcept C105795698 @default.
- W4287324280 hasConcept C107673813 @default.
- W4287324280 hasConcept C108583219 @default.
- W4287324280 hasConcept C114289077 @default.
- W4287324280 hasConcept C119857082 @default.
- W4287324280 hasConcept C124101348 @default.
- W4287324280 hasConcept C153180895 @default.
- W4287324280 hasConcept C154945302 @default.
- W4287324280 hasConcept C160234255 @default.
- W4287324280 hasConcept C19499675 @default.
- W4287324280 hasConcept C32230216 @default.
- W4287324280 hasConcept C33923547 @default.
- W4287324280 hasConcept C41008148 @default.
- W4287324280 hasConcept C49937458 @default.
- W4287324280 hasConceptScore W4287324280C105795698 @default.
- W4287324280 hasConceptScore W4287324280C107673813 @default.
- W4287324280 hasConceptScore W4287324280C108583219 @default.
- W4287324280 hasConceptScore W4287324280C114289077 @default.
- W4287324280 hasConceptScore W4287324280C119857082 @default.
- W4287324280 hasConceptScore W4287324280C124101348 @default.
- W4287324280 hasConceptScore W4287324280C153180895 @default.
- W4287324280 hasConceptScore W4287324280C154945302 @default.
- W4287324280 hasConceptScore W4287324280C160234255 @default.
- W4287324280 hasConceptScore W4287324280C19499675 @default.
- W4287324280 hasConceptScore W4287324280C32230216 @default.
- W4287324280 hasConceptScore W4287324280C33923547 @default.
- W4287324280 hasConceptScore W4287324280C41008148 @default.
- W4287324280 hasConceptScore W4287324280C49937458 @default.
- W4287324280 hasLocation W42873242801 @default.
- W4287324280 hasOpenAccess W4287324280 @default.
- W4287324280 hasPrimaryLocation W42873242801 @default.
- W4287324280 hasRelatedWork W2067822263 @default.
- W4287324280 hasRelatedWork W2511279186 @default.
- W4287324280 hasRelatedWork W2589495114 @default.
- W4287324280 hasRelatedWork W2909645158 @default.
- W4287324280 hasRelatedWork W2964059111 @default.
- W4287324280 hasRelatedWork W2972600980 @default.
- W4287324280 hasRelatedWork W3004547119 @default.
- W4287324280 hasRelatedWork W4223943233 @default.
- W4287324280 hasRelatedWork W4312200629 @default.
- W4287324280 hasRelatedWork W582134693 @default.
- W4287324280 isParatext "false" @default.
- W4287324280 isRetracted "false" @default.
- W4287324280 workType "article" @default.