Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287327422> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W4287327422 abstract "The 1-2-3 Conjecture asks whether almost all graphs can be (edge-)labelled with $1,2,3$ so that no two adjacent vertices are incident to the same sum of labels. In the last decades, several aspects of this problem have been studied in literature, including more general versions and slight variations. Notable such variations include the List 1-2-3 Conjecture variant, in which edges must be assigned labels from dedicated lists of three labels, and the Multiplicative 1-2-3 Conjecture variant, in which labels~$1,2,3$ must be assigned to the edges so that adjacent vertices are incident to different products of labels. Several results obtained towards these two variants led to observe some behaviours that are distant from those of the original conjecture. In this work, we consider the list version of the Multiplicative 1-2-3 Conjecture, proposing the first study dedicated to this very problem. In particular, given any graph $G$, we wonder about the minimum~$k$ such that $G$ can be labelled as desired when its edges must be assigned labels from dedicated lists of size~$k$. Exploiting a relationship between our problem and the List 1-2-3 Conjecture, we provide upper bounds on~$k$ when $G$ belongs to particular classes of graphs. We further improve some of these bounds through dedicated arguments." @default.
- W4287327422 created "2022-07-25" @default.
- W4287327422 creator A5012798345 @default.
- W4287327422 creator A5032196380 @default.
- W4287327422 creator A5034772251 @default.
- W4287327422 creator A5072234016 @default.
- W4287327422 date "2021-01-01" @default.
- W4287327422 modified "2023-10-09" @default.
- W4287327422 title "On a List Variant of the Multiplicative 1-2-3 Conjecture" @default.
- W4287327422 hasPublicationYear "2021" @default.
- W4287327422 type Work @default.
- W4287327422 citedByCount "0" @default.
- W4287327422 crossrefType "report" @default.
- W4287327422 hasAuthorship W4287327422A5012798345 @default.
- W4287327422 hasAuthorship W4287327422A5032196380 @default.
- W4287327422 hasAuthorship W4287327422A5034772251 @default.
- W4287327422 hasAuthorship W4287327422A5072234016 @default.
- W4287327422 hasBestOaLocation W42873274222 @default.
- W4287327422 hasConcept C114614502 @default.
- W4287327422 hasConcept C118615104 @default.
- W4287327422 hasConcept C132525143 @default.
- W4287327422 hasConcept C134306372 @default.
- W4287327422 hasConcept C2780990831 @default.
- W4287327422 hasConcept C33923547 @default.
- W4287327422 hasConcept C41008148 @default.
- W4287327422 hasConcept C42747912 @default.
- W4287327422 hasConceptScore W4287327422C114614502 @default.
- W4287327422 hasConceptScore W4287327422C118615104 @default.
- W4287327422 hasConceptScore W4287327422C132525143 @default.
- W4287327422 hasConceptScore W4287327422C134306372 @default.
- W4287327422 hasConceptScore W4287327422C2780990831 @default.
- W4287327422 hasConceptScore W4287327422C33923547 @default.
- W4287327422 hasConceptScore W4287327422C41008148 @default.
- W4287327422 hasConceptScore W4287327422C42747912 @default.
- W4287327422 hasLocation W42873274221 @default.
- W4287327422 hasLocation W42873274222 @default.
- W4287327422 hasLocation W42873274223 @default.
- W4287327422 hasOpenAccess W4287327422 @default.
- W4287327422 hasPrimaryLocation W42873274221 @default.
- W4287327422 hasRelatedWork W1022019 @default.
- W4287327422 hasRelatedWork W10838923 @default.
- W4287327422 hasRelatedWork W11634937 @default.
- W4287327422 hasRelatedWork W1608193 @default.
- W4287327422 hasRelatedWork W1871655 @default.
- W4287327422 hasRelatedWork W1980414 @default.
- W4287327422 hasRelatedWork W245881 @default.
- W4287327422 hasRelatedWork W3926268 @default.
- W4287327422 hasRelatedWork W6502245 @default.
- W4287327422 hasRelatedWork W7819748 @default.
- W4287327422 isParatext "false" @default.
- W4287327422 isRetracted "false" @default.
- W4287327422 workType "report" @default.