Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287327885> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4287327885 abstract "We consider some supervised binary classification tasks and a regression task, whereas SVM and Deep Learning, at present, exhibit the best generalization performances. We extend the work [3] on a generalized quadratic loss for learning problems that examines pattern correlations in order to concentrate the learning problem into input space regions where patterns are more densely distributed. From a shallow methods point of view (e.g.: SVM), since the following mathematical derivation of problem (9) in [3] is incorrect, we restart from problem (8) in [3] and we try to solve it with one procedure that iterates over the dual variables until the primal and dual objective functions converge. In addition we propose another algorithm that tries to solve the classification problem directly from the primal problem formulation. We make also use of Multiple Kernel Learning to improve generalization performances. Moreover, we introduce for the first time a custom loss that takes in consideration pattern correlation for a shallow and a Deep Learning task. We propose some pattern selection criteria and the results on 4 UCI data-sets for the SVM method. We also report the results on a larger binary classification data-set based on Twitter, again drawn from UCI, combined with shallow Learning Neural Networks, with and without the generalized quadratic loss. At last, we test our loss with a Deep Neural Network within a larger regression task taken from UCI. We compare the results of our optimizers with the well known solver SVMlight and with Keras Multi-Layers Neural Networks with standard losses and with a parameterized generalized quadratic loss, and we obtain comparable results." @default.
- W4287327885 created "2022-07-25" @default.
- W4287327885 creator A5003433261 @default.
- W4287327885 date "2021-02-15" @default.
- W4287327885 modified "2023-10-16" @default.
- W4287327885 title "A generalized quadratic loss for SVM and Deep Neural Networks" @default.
- W4287327885 doi "https://doi.org/10.48550/arxiv.2102.07606" @default.
- W4287327885 hasPublicationYear "2021" @default.
- W4287327885 type Work @default.
- W4287327885 citedByCount "0" @default.
- W4287327885 crossrefType "posted-content" @default.
- W4287327885 hasAuthorship W4287327885A5003433261 @default.
- W4287327885 hasBestOaLocation W42873278851 @default.
- W4287327885 hasConcept C108583219 @default.
- W4287327885 hasConcept C11413529 @default.
- W4287327885 hasConcept C114614502 @default.
- W4287327885 hasConcept C119857082 @default.
- W4287327885 hasConcept C12267149 @default.
- W4287327885 hasConcept C126255220 @default.
- W4287327885 hasConcept C129844170 @default.
- W4287327885 hasConcept C134306372 @default.
- W4287327885 hasConcept C140479938 @default.
- W4287327885 hasConcept C153180895 @default.
- W4287327885 hasConcept C154945302 @default.
- W4287327885 hasConcept C177148314 @default.
- W4287327885 hasConcept C199360897 @default.
- W4287327885 hasConcept C2524010 @default.
- W4287327885 hasConcept C2778770139 @default.
- W4287327885 hasConcept C33923547 @default.
- W4287327885 hasConcept C41008148 @default.
- W4287327885 hasConcept C48372109 @default.
- W4287327885 hasConcept C50644808 @default.
- W4287327885 hasConcept C66905080 @default.
- W4287327885 hasConcept C74193536 @default.
- W4287327885 hasConcept C81845259 @default.
- W4287327885 hasConcept C94375191 @default.
- W4287327885 hasConceptScore W4287327885C108583219 @default.
- W4287327885 hasConceptScore W4287327885C11413529 @default.
- W4287327885 hasConceptScore W4287327885C114614502 @default.
- W4287327885 hasConceptScore W4287327885C119857082 @default.
- W4287327885 hasConceptScore W4287327885C12267149 @default.
- W4287327885 hasConceptScore W4287327885C126255220 @default.
- W4287327885 hasConceptScore W4287327885C129844170 @default.
- W4287327885 hasConceptScore W4287327885C134306372 @default.
- W4287327885 hasConceptScore W4287327885C140479938 @default.
- W4287327885 hasConceptScore W4287327885C153180895 @default.
- W4287327885 hasConceptScore W4287327885C154945302 @default.
- W4287327885 hasConceptScore W4287327885C177148314 @default.
- W4287327885 hasConceptScore W4287327885C199360897 @default.
- W4287327885 hasConceptScore W4287327885C2524010 @default.
- W4287327885 hasConceptScore W4287327885C2778770139 @default.
- W4287327885 hasConceptScore W4287327885C33923547 @default.
- W4287327885 hasConceptScore W4287327885C41008148 @default.
- W4287327885 hasConceptScore W4287327885C48372109 @default.
- W4287327885 hasConceptScore W4287327885C50644808 @default.
- W4287327885 hasConceptScore W4287327885C66905080 @default.
- W4287327885 hasConceptScore W4287327885C74193536 @default.
- W4287327885 hasConceptScore W4287327885C81845259 @default.
- W4287327885 hasConceptScore W4287327885C94375191 @default.
- W4287327885 hasLocation W42873278851 @default.
- W4287327885 hasOpenAccess W4287327885 @default.
- W4287327885 hasPrimaryLocation W42873278851 @default.
- W4287327885 hasRelatedWork W13840495 @default.
- W4287327885 hasRelatedWork W14783709 @default.
- W4287327885 hasRelatedWork W378023 @default.
- W4287327885 hasRelatedWork W5056303 @default.
- W4287327885 hasRelatedWork W6229082 @default.
- W4287327885 hasRelatedWork W6717794 @default.
- W4287327885 hasRelatedWork W845024 @default.
- W4287327885 hasRelatedWork W9190101 @default.
- W4287327885 hasRelatedWork W9711757 @default.
- W4287327885 hasRelatedWork W5323488 @default.
- W4287327885 isParatext "false" @default.
- W4287327885 isRetracted "false" @default.
- W4287327885 workType "article" @default.