Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287331348> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4287331348 abstract "Face masks have long been used in many areas of everyday life to protect against the inhalation of hazardous fumes and particles. They also offer an effective solution in healthcare for bi-directional protection against air-borne diseases. Wearing and positioning the mask correctly is essential for its function. Convolutional neural networks (CNNs) offer an excellent solution for face recognition and classification of correct mask wearing and positioning. In the context of the ongoing COVID-19 pandemic, such algorithms can be used at entrances to corporate buildings, airports, shopping areas, and other indoor locations, to mitigate the spread of the virus. These application scenarios impose major challenges to the underlying compute platform. The inference hardware must be cheap, small and energy efficient, while providing sufficient memory and compute power to execute accurate CNNs at a reasonably low latency. To maintain data privacy of the public, all processing must remain on the edge-device, without any communication with cloud servers. To address these challenges, we present a low-power binary neural network classifier for correct facial-mask wear and positioning. The classification task is implemented on an embedded FPGA, performing high-throughput binary operations. Classification can take place at up to ~6400 frames-per-second, easily enabling multi-camera, speed-gate settings or statistics collection in crowd settings. When deployed on a single entrance or gate, the idle power consumption is reduced to 1.6W, improving the battery-life of the device. We achieve an accuracy of up to 98% for four wearing positions of the MaskedFace-Net dataset. To maintain equivalent classification accuracy for all face structures, skin-tones, hair types, and mask types, the algorithms are tested for their ability to generalize the relevant features over all subjects using the Grad-CAM approach." @default.
- W4287331348 created "2022-07-25" @default.
- W4287331348 creator A5005732789 @default.
- W4287331348 creator A5037114730 @default.
- W4287331348 creator A5037365531 @default.
- W4287331348 creator A5047063939 @default.
- W4287331348 creator A5085220085 @default.
- W4287331348 date "2021-02-05" @default.
- W4287331348 modified "2023-09-29" @default.
- W4287331348 title "BinaryCoP: Binary Neural Network-based COVID-19 Face-Mask Wear and Positioning Predictor on Edge Devices" @default.
- W4287331348 doi "https://doi.org/10.48550/arxiv.2102.03456" @default.
- W4287331348 hasPublicationYear "2021" @default.
- W4287331348 type Work @default.
- W4287331348 citedByCount "0" @default.
- W4287331348 crossrefType "posted-content" @default.
- W4287331348 hasAuthorship W4287331348A5005732789 @default.
- W4287331348 hasAuthorship W4287331348A5037114730 @default.
- W4287331348 hasAuthorship W4287331348A5037365531 @default.
- W4287331348 hasAuthorship W4287331348A5047063939 @default.
- W4287331348 hasAuthorship W4287331348A5085220085 @default.
- W4287331348 hasBestOaLocation W42873313481 @default.
- W4287331348 hasConcept C111919701 @default.
- W4287331348 hasConcept C138236772 @default.
- W4287331348 hasConcept C149635348 @default.
- W4287331348 hasConcept C151730666 @default.
- W4287331348 hasConcept C154945302 @default.
- W4287331348 hasConcept C157764524 @default.
- W4287331348 hasConcept C2779343474 @default.
- W4287331348 hasConcept C31510193 @default.
- W4287331348 hasConcept C41008148 @default.
- W4287331348 hasConcept C52622490 @default.
- W4287331348 hasConcept C555944384 @default.
- W4287331348 hasConcept C76155785 @default.
- W4287331348 hasConcept C79403827 @default.
- W4287331348 hasConcept C79974875 @default.
- W4287331348 hasConcept C81363708 @default.
- W4287331348 hasConcept C86803240 @default.
- W4287331348 hasConceptScore W4287331348C111919701 @default.
- W4287331348 hasConceptScore W4287331348C138236772 @default.
- W4287331348 hasConceptScore W4287331348C149635348 @default.
- W4287331348 hasConceptScore W4287331348C151730666 @default.
- W4287331348 hasConceptScore W4287331348C154945302 @default.
- W4287331348 hasConceptScore W4287331348C157764524 @default.
- W4287331348 hasConceptScore W4287331348C2779343474 @default.
- W4287331348 hasConceptScore W4287331348C31510193 @default.
- W4287331348 hasConceptScore W4287331348C41008148 @default.
- W4287331348 hasConceptScore W4287331348C52622490 @default.
- W4287331348 hasConceptScore W4287331348C555944384 @default.
- W4287331348 hasConceptScore W4287331348C76155785 @default.
- W4287331348 hasConceptScore W4287331348C79403827 @default.
- W4287331348 hasConceptScore W4287331348C79974875 @default.
- W4287331348 hasConceptScore W4287331348C81363708 @default.
- W4287331348 hasConceptScore W4287331348C86803240 @default.
- W4287331348 hasLocation W42873313481 @default.
- W4287331348 hasOpenAccess W4287331348 @default.
- W4287331348 hasPrimaryLocation W42873313481 @default.
- W4287331348 hasRelatedWork W2521062615 @default.
- W4287331348 hasRelatedWork W2765676680 @default.
- W4287331348 hasRelatedWork W3034241453 @default.
- W4287331348 hasRelatedWork W3047075839 @default.
- W4287331348 hasRelatedWork W3124066309 @default.
- W4287331348 hasRelatedWork W3160390035 @default.
- W4287331348 hasRelatedWork W3186860856 @default.
- W4287331348 hasRelatedWork W4280651240 @default.
- W4287331348 hasRelatedWork W4293067760 @default.
- W4287331348 hasRelatedWork W4295036207 @default.
- W4287331348 isParatext "false" @default.
- W4287331348 isRetracted "false" @default.
- W4287331348 workType "article" @default.