Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287383886> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W4287383886 endingPage "749" @default.
- W4287383886 startingPage "739" @default.
- W4287383886 abstract "Highlights Universal multiple linear regression (uMLR) was used to optimize soil moisture sensor depth. Eight years of soil moisture data from various water treatments were tested, then validated. The best single observation depth for irrigation management is at 30 cm below soil surface. A single calibrated soil moisture sensor may be used to aggregate soil water deficit in the root zone. Abstract. Soil moisture sensors are valuable tools in irrigation management, but due to soil spatial variability it is challenging for point-based sensors to characterize the entire soil water profile. Universal multiple linear regression (uMLR) is a simple machine learning tool that analyzes the relationship between all possible subsets of observations and the prediction of interest. This study used uMLR and volumetric water content data (VWC) taken from maize field experiments at the Limited Irrigation Research Farm near Greeley, Colorado, to optimize the number and placement of soil moisture sensors to characterize the entire soil water deficit (SWD) in the root zone. The uMLR analysis quantified the accuracy of using one or two VWC measurements to represent SWD. We evaluated seven field seasons, with 12 treatments and four replicates of each, where volumetric VWC was typically measured one to three times weekly. Results indicate that the best single sensor depth is at 30 cm, and the best combination of two sensors is at 0 to 15 cm and 60 cm. To validate the experiment, a continuous VWC sensor was used at 30 cm to predict SWD results with acceptable accuracy (RMSE = 4.60 mm). This study suggests that in the sandy loam site evaluated and with varying irrigation levels, soil moisture sensor placement near the soil surface along with knowledge of soil texture can be used to characterize SWD. This technique may be transferable to other locations and soils and shows potential for optimizing irrigation management via soil moisture sensor networks with continuous SWD data. Keywords: Deficit irrigation, Machine learning, Soil moisture sensor, Soil water deficit, Universal multiple linear regression, Volumetric water content." @default.
- W4287383886 created "2022-07-25" @default.
- W4287383886 creator A5035069792 @default.
- W4287383886 creator A5055416505 @default.
- W4287383886 date "2022-01-01" @default.
- W4287383886 modified "2023-10-14" @default.
- W4287383886 title "Optimizing Soil Moisture Sensor Depth for Irrigation Management Using Universal Multiple Linear Regression" @default.
- W4287383886 doi "https://doi.org/10.13031/ja.15044" @default.
- W4287383886 hasPublicationYear "2022" @default.
- W4287383886 type Work @default.
- W4287383886 citedByCount "0" @default.
- W4287383886 crossrefType "journal-article" @default.
- W4287383886 hasAuthorship W4287383886A5035069792 @default.
- W4287383886 hasAuthorship W4287383886A5055416505 @default.
- W4287383886 hasBestOaLocation W42873838861 @default.
- W4287383886 hasConcept C105795698 @default.
- W4287383886 hasConcept C127313418 @default.
- W4287383886 hasConcept C159390177 @default.
- W4287383886 hasConcept C159750122 @default.
- W4287383886 hasConcept C187320778 @default.
- W4287383886 hasConcept C191440113 @default.
- W4287383886 hasConcept C24939127 @default.
- W4287383886 hasConcept C2776544661 @default.
- W4287383886 hasConcept C27934549 @default.
- W4287383886 hasConcept C33923547 @default.
- W4287383886 hasConcept C39432304 @default.
- W4287383886 hasConcept C48921125 @default.
- W4287383886 hasConcept C62649853 @default.
- W4287383886 hasConcept C6557445 @default.
- W4287383886 hasConcept C76886044 @default.
- W4287383886 hasConcept C86803240 @default.
- W4287383886 hasConcept C88862950 @default.
- W4287383886 hasConceptScore W4287383886C105795698 @default.
- W4287383886 hasConceptScore W4287383886C127313418 @default.
- W4287383886 hasConceptScore W4287383886C159390177 @default.
- W4287383886 hasConceptScore W4287383886C159750122 @default.
- W4287383886 hasConceptScore W4287383886C187320778 @default.
- W4287383886 hasConceptScore W4287383886C191440113 @default.
- W4287383886 hasConceptScore W4287383886C24939127 @default.
- W4287383886 hasConceptScore W4287383886C2776544661 @default.
- W4287383886 hasConceptScore W4287383886C27934549 @default.
- W4287383886 hasConceptScore W4287383886C33923547 @default.
- W4287383886 hasConceptScore W4287383886C39432304 @default.
- W4287383886 hasConceptScore W4287383886C48921125 @default.
- W4287383886 hasConceptScore W4287383886C62649853 @default.
- W4287383886 hasConceptScore W4287383886C6557445 @default.
- W4287383886 hasConceptScore W4287383886C76886044 @default.
- W4287383886 hasConceptScore W4287383886C86803240 @default.
- W4287383886 hasConceptScore W4287383886C88862950 @default.
- W4287383886 hasFunder F4320306114 @default.
- W4287383886 hasIssue "4" @default.
- W4287383886 hasLocation W42873838861 @default.
- W4287383886 hasOpenAccess W4287383886 @default.
- W4287383886 hasPrimaryLocation W42873838861 @default.
- W4287383886 hasRelatedWork W1975073740 @default.
- W4287383886 hasRelatedWork W2084237095 @default.
- W4287383886 hasRelatedWork W2267584387 @default.
- W4287383886 hasRelatedWork W2335809501 @default.
- W4287383886 hasRelatedWork W2393240104 @default.
- W4287383886 hasRelatedWork W2411288824 @default.
- W4287383886 hasRelatedWork W3084003559 @default.
- W4287383886 hasRelatedWork W3192026351 @default.
- W4287383886 hasRelatedWork W4287383886 @default.
- W4287383886 hasRelatedWork W4363674335 @default.
- W4287383886 hasVolume "65" @default.
- W4287383886 isParatext "false" @default.
- W4287383886 isRetracted "false" @default.
- W4287383886 workType "article" @default.