Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287502247> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4287502247 abstract "We provide examples of multiplicative functions $f$ supported on the $k$-free integers such that at primes $f(p)=pm 1$ and such that the partial sums of $f$ up to $x$ are $o(x^{1/k})$. Further, if we assume the Generalized Riemann Hypothesis, then we can improve the exponent $1/k$: There are examples such that the partial sums up to $x$ are $o(x^{1/(k+frac{1}{2})+epsilon})$, for all $epsilon>0$. This generalizes to the $k$-free integers the results of Aymone, `` A note on multiplicative functions resembling the {M}{o}bius function'', J. Number Theory, 212 (2020), pp. 113--121." @default.
- W4287502247 created "2022-07-25" @default.
- W4287502247 creator A5003988704 @default.
- W4287502247 creator A5035023191 @default.
- W4287502247 creator A5076937991 @default.
- W4287502247 date "2021-01-01" @default.
- W4287502247 modified "2023-09-27" @default.
- W4287502247 title "Multiplicative functions supported on the $k$-free integers with small partial sums" @default.
- W4287502247 doi "https://doi.org/10.48550/arxiv.2101.00279" @default.
- W4287502247 hasPublicationYear "2021" @default.
- W4287502247 type Work @default.
- W4287502247 citedByCount "0" @default.
- W4287502247 crossrefType "posted-content" @default.
- W4287502247 hasAuthorship W4287502247A5003988704 @default.
- W4287502247 hasAuthorship W4287502247A5035023191 @default.
- W4287502247 hasAuthorship W4287502247A5076937991 @default.
- W4287502247 hasBestOaLocation W42875022471 @default.
- W4287502247 hasConcept C114614502 @default.
- W4287502247 hasConcept C118615104 @default.
- W4287502247 hasConcept C134306372 @default.
- W4287502247 hasConcept C138885662 @default.
- W4287502247 hasConcept C14036430 @default.
- W4287502247 hasConcept C169654258 @default.
- W4287502247 hasConcept C199479865 @default.
- W4287502247 hasConcept C202444582 @default.
- W4287502247 hasConcept C2780388253 @default.
- W4287502247 hasConcept C33923547 @default.
- W4287502247 hasConcept C41895202 @default.
- W4287502247 hasConcept C42747912 @default.
- W4287502247 hasConcept C78458016 @default.
- W4287502247 hasConcept C86803240 @default.
- W4287502247 hasConceptScore W4287502247C114614502 @default.
- W4287502247 hasConceptScore W4287502247C118615104 @default.
- W4287502247 hasConceptScore W4287502247C134306372 @default.
- W4287502247 hasConceptScore W4287502247C138885662 @default.
- W4287502247 hasConceptScore W4287502247C14036430 @default.
- W4287502247 hasConceptScore W4287502247C169654258 @default.
- W4287502247 hasConceptScore W4287502247C199479865 @default.
- W4287502247 hasConceptScore W4287502247C202444582 @default.
- W4287502247 hasConceptScore W4287502247C2780388253 @default.
- W4287502247 hasConceptScore W4287502247C33923547 @default.
- W4287502247 hasConceptScore W4287502247C41895202 @default.
- W4287502247 hasConceptScore W4287502247C42747912 @default.
- W4287502247 hasConceptScore W4287502247C78458016 @default.
- W4287502247 hasConceptScore W4287502247C86803240 @default.
- W4287502247 hasLocation W42875022471 @default.
- W4287502247 hasOpenAccess W4287502247 @default.
- W4287502247 hasPrimaryLocation W42875022471 @default.
- W4287502247 hasRelatedWork W1008467536 @default.
- W4287502247 hasRelatedWork W2041519399 @default.
- W4287502247 hasRelatedWork W2044358916 @default.
- W4287502247 hasRelatedWork W2492284202 @default.
- W4287502247 hasRelatedWork W2949604911 @default.
- W4287502247 hasRelatedWork W2964268226 @default.
- W4287502247 hasRelatedWork W2966977692 @default.
- W4287502247 hasRelatedWork W3120746940 @default.
- W4287502247 hasRelatedWork W4210609208 @default.
- W4287502247 hasRelatedWork W4245500462 @default.
- W4287502247 isParatext "false" @default.
- W4287502247 isRetracted "false" @default.
- W4287502247 workType "article" @default.