Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287514691> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4287514691 endingPage "264" @default.
- W4287514691 startingPage "249" @default.
- W4287514691 abstract "Background: Excellence in the growing technologies enables innovative techniques to ensure the privacy and security of individuals. Manual detection of anomalies through monitoring is time-consuming and inefficient most of the time; hence automatic identification of anomalous events is necessary to cope with modern technology. Purpose: To enhance the security in public places as well as in the dwelling areas, surveillance cameras are employed to detect anomalous events. Methods: As a contribution, this research focuses on developing an anomaly detection model based on the deep neural network classifier which effectively classifies the abnormal events in the surveillance videos and is effectively optimized using the grey wolf optimization algorithm. The extraction of the features utilizing the Histogram of Optical flow Orientation and Magnitude (HOFM) based feature descriptor furthermore improves the performance of the classifier. Results: The experimental results are obtained based on the frame level and pixel levels with an accuracy rate of 92.76 and 92.13%, Area under Curve (AUC) rate of 91.76 and 92%, and the equal error rate (EER) is 7.24 and 9.37% which is more efficient compared with existing state-of-art methods. Conclusion: The proposed method achieved enhanced accuracy and minimal error rate compared to the state of art techniques and hence it can be utilized for the detection of anomalies in the video." @default.
- W4287514691 created "2022-07-25" @default.
- W4287514691 creator A5024999705 @default.
- W4287514691 creator A5038679429 @default.
- W4287514691 date "2022-01-01" @default.
- W4287514691 modified "2023-10-03" @default.
- W4287514691 title "Video Anomaly Detection Using Optimization Based Deep Learning" @default.
- W4287514691 cites W1983364832 @default.
- W4287514691 cites W2015468740 @default.
- W4287514691 cites W2016053056 @default.
- W4287514691 cites W2766086913 @default.
- W4287514691 cites W2886020981 @default.
- W4287514691 cites W2963878592 @default.
- W4287514691 cites W2989705574 @default.
- W4287514691 cites W2996443765 @default.
- W4287514691 cites W3009830806 @default.
- W4287514691 cites W3045521046 @default.
- W4287514691 cites W3045846989 @default.
- W4287514691 cites W3080722105 @default.
- W4287514691 cites W3089320310 @default.
- W4287514691 cites W3162566909 @default.
- W4287514691 cites W3197961530 @default.
- W4287514691 cites W3212711973 @default.
- W4287514691 doi "https://doi.org/10.1007/978-981-19-2541-2_20" @default.
- W4287514691 hasPublicationYear "2022" @default.
- W4287514691 type Work @default.
- W4287514691 citedByCount "0" @default.
- W4287514691 crossrefType "book-chapter" @default.
- W4287514691 hasAuthorship W4287514691A5024999705 @default.
- W4287514691 hasAuthorship W4287514691A5038679429 @default.
- W4287514691 hasConcept C108583219 @default.
- W4287514691 hasConcept C115961682 @default.
- W4287514691 hasConcept C127413603 @default.
- W4287514691 hasConcept C153180895 @default.
- W4287514691 hasConcept C154945302 @default.
- W4287514691 hasConcept C178518018 @default.
- W4287514691 hasConcept C21547014 @default.
- W4287514691 hasConcept C31972630 @default.
- W4287514691 hasConcept C40969351 @default.
- W4287514691 hasConcept C41008148 @default.
- W4287514691 hasConcept C52622490 @default.
- W4287514691 hasConcept C53533937 @default.
- W4287514691 hasConcept C739882 @default.
- W4287514691 hasConcept C95623464 @default.
- W4287514691 hasConceptScore W4287514691C108583219 @default.
- W4287514691 hasConceptScore W4287514691C115961682 @default.
- W4287514691 hasConceptScore W4287514691C127413603 @default.
- W4287514691 hasConceptScore W4287514691C153180895 @default.
- W4287514691 hasConceptScore W4287514691C154945302 @default.
- W4287514691 hasConceptScore W4287514691C178518018 @default.
- W4287514691 hasConceptScore W4287514691C21547014 @default.
- W4287514691 hasConceptScore W4287514691C31972630 @default.
- W4287514691 hasConceptScore W4287514691C40969351 @default.
- W4287514691 hasConceptScore W4287514691C41008148 @default.
- W4287514691 hasConceptScore W4287514691C52622490 @default.
- W4287514691 hasConceptScore W4287514691C53533937 @default.
- W4287514691 hasConceptScore W4287514691C739882 @default.
- W4287514691 hasConceptScore W4287514691C95623464 @default.
- W4287514691 hasLocation W42875146911 @default.
- W4287514691 hasOpenAccess W4287514691 @default.
- W4287514691 hasPrimaryLocation W42875146911 @default.
- W4287514691 hasRelatedWork W1498259939 @default.
- W4287514691 hasRelatedWork W1679997933 @default.
- W4287514691 hasRelatedWork W1892011953 @default.
- W4287514691 hasRelatedWork W1983610137 @default.
- W4287514691 hasRelatedWork W1986586280 @default.
- W4287514691 hasRelatedWork W2016701876 @default.
- W4287514691 hasRelatedWork W2137654917 @default.
- W4287514691 hasRelatedWork W2511137960 @default.
- W4287514691 hasRelatedWork W2550539038 @default.
- W4287514691 hasRelatedWork W2767563364 @default.
- W4287514691 isParatext "false" @default.
- W4287514691 isRetracted "false" @default.
- W4287514691 workType "book-chapter" @default.