Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287578633> ?p ?o ?g. }
- W4287578633 endingPage "2620" @default.
- W4287578633 startingPage "2595" @default.
- W4287578633 abstract "Sentiment analysis is the automated coding of emotions expressed in text. Sentiment analysis and other types of analyses focusing on the automatic coding of textual documents are increasingly popular in psychology and computer science. However, the potential of treating automatically coded text collected with regular sampling intervals as a signal is currently overlooked. We use the phrase text as signal to refer to the application of signal processing techniques to coded textual documents sampled with regularity. In order to illustrate the potential of treating text as signal, we introduce the reader to a variety of such techniques in a tutorial with two case studies in the realm of social media analysis. First, we apply finite response impulse filtering to emotion-coded tweets posted during the US Election Week of 2020 and discuss the visualization of the resulting variation in the filtered signal. We use changepoint detection to highlight the important changes in the emotional signals. Then we examine data interpolation, analysis of periodicity via the fast Fourier transform (FFT), and FFT filtering to personal value-coded tweets from November 2019 to October 2020 and link the variation in the filtered signal to some of the epoch-defining events occurring during this period. Finally, we use block bootstrapping to estimate the variability/uncertainty in the resulting filtered signals. After working through the tutorial, the readers will understand the basics of signal processing to analyze regularly sampled coded text." @default.
- W4287578633 created "2022-07-25" @default.
- W4287578633 creator A5036073591 @default.
- W4287578633 creator A5037084477 @default.
- W4287578633 creator A5044175398 @default.
- W4287578633 date "2022-07-25" @default.
- W4287578633 modified "2023-09-30" @default.
- W4287578633 title "Text as signal. A tutorial with case studies focusing on social media (Twitter)" @default.
- W4287578633 cites W1482097130 @default.
- W4287578633 cites W1495512916 @default.
- W4287578633 cites W1567208000 @default.
- W4287578633 cites W1764491202 @default.
- W4287578633 cites W1915139526 @default.
- W4287578633 cites W1963704462 @default.
- W4287578633 cites W1968828299 @default.
- W4287578633 cites W1973931642 @default.
- W4287578633 cites W1985918513 @default.
- W4287578633 cites W2008803468 @default.
- W4287578633 cites W201361503 @default.
- W4287578633 cites W2019087047 @default.
- W4287578633 cites W2037481123 @default.
- W4287578633 cites W2038123411 @default.
- W4287578633 cites W2052070544 @default.
- W4287578633 cites W2052948342 @default.
- W4287578633 cites W2056662071 @default.
- W4287578633 cites W2058260126 @default.
- W4287578633 cites W2061261494 @default.
- W4287578633 cites W2077377961 @default.
- W4287578633 cites W2080966421 @default.
- W4287578633 cites W2088082588 @default.
- W4287578633 cites W2096086610 @default.
- W4287578633 cites W2096186423 @default.
- W4287578633 cites W2096944735 @default.
- W4287578633 cites W2106758036 @default.
- W4287578633 cites W2107218202 @default.
- W4287578633 cites W2110290963 @default.
- W4287578633 cites W2112688502 @default.
- W4287578633 cites W2117239687 @default.
- W4287578633 cites W2117645142 @default.
- W4287578633 cites W2128000797 @default.
- W4287578633 cites W2137387582 @default.
- W4287578633 cites W2144772486 @default.
- W4287578633 cites W2149755480 @default.
- W4287578633 cites W2152968365 @default.
- W4287578633 cites W2154540931 @default.
- W4287578633 cites W2156803951 @default.
- W4287578633 cites W2171468534 @default.
- W4287578633 cites W2284729062 @default.
- W4287578633 cites W2306941105 @default.
- W4287578633 cites W2315735061 @default.
- W4287578633 cites W2336574956 @default.
- W4287578633 cites W2352058509 @default.
- W4287578633 cites W2402700 @default.
- W4287578633 cites W2405042511 @default.
- W4287578633 cites W2438173235 @default.
- W4287578633 cites W2488221273 @default.
- W4287578633 cites W2553110962 @default.
- W4287578633 cites W2606776062 @default.
- W4287578633 cites W2739148453 @default.
- W4287578633 cites W2741216199 @default.
- W4287578633 cites W2743282493 @default.
- W4287578633 cites W2764120352 @default.
- W4287578633 cites W2809211968 @default.
- W4287578633 cites W2809562624 @default.
- W4287578633 cites W2891124983 @default.
- W4287578633 cites W2904560462 @default.
- W4287578633 cites W2905010214 @default.
- W4287578633 cites W2909693411 @default.
- W4287578633 cites W2964248800 @default.
- W4287578633 cites W2978011237 @default.
- W4287578633 cites W3039850338 @default.
- W4287578633 cites W3091069321 @default.
- W4287578633 cites W3093211240 @default.
- W4287578633 cites W3111966518 @default.
- W4287578633 cites W3127096501 @default.
- W4287578633 cites W3132495213 @default.
- W4287578633 cites W3146118974 @default.
- W4287578633 cites W3164071271 @default.
- W4287578633 cites W4205184193 @default.
- W4287578633 cites W4233099317 @default.
- W4287578633 cites W4239720551 @default.
- W4287578633 cites W4290856507 @default.
- W4287578633 doi "https://doi.org/10.3758/s13428-022-01917-1" @default.
- W4287578633 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35879505" @default.
- W4287578633 hasPublicationYear "2022" @default.
- W4287578633 type Work @default.
- W4287578633 citedByCount "3" @default.
- W4287578633 countsByYear W42875786332022 @default.
- W4287578633 countsByYear W42875786332023 @default.
- W4287578633 crossrefType "journal-article" @default.
- W4287578633 hasAuthorship W4287578633A5036073591 @default.
- W4287578633 hasAuthorship W4287578633A5037084477 @default.
- W4287578633 hasAuthorship W4287578633A5044175398 @default.
- W4287578633 hasBestOaLocation W42875786331 @default.
- W4287578633 hasConcept C104267543 @default.
- W4287578633 hasConcept C105795698 @default.
- W4287578633 hasConcept C11413529 @default.
- W4287578633 hasConcept C121332964 @default.