Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287599573> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4287599573 abstract "Let $f(x)$ be a non-zero polynomial with complex coefficients, and $M_p = int_{0}^1 f(x)^p dx$ for $p$ a positive integer. In a recent paper, Muger and Tuset showed that $limsup_{p to infty} |M_p|^{1/p} > 0$, and conjectured that this limit is equal to the maximum amongst the critical values of $f$ together with the values $|f(0)|$ and $|f(1)|$. We give an example that shows that this conjecture is false. It also may be natural to guess that $limsup_{p to infty} |M_p|^{1/p}$ is equal to the maximum of $|f(x)|$ on $[0,1]$. However, we give a counterexample to this as well. We also provide a few more guesses as to the behaviour of the quantity $limsup_{p to infty} |M_p|^{1/p}$." @default.
- W4287599573 created "2022-07-25" @default.
- W4287599573 creator A5061877874 @default.
- W4287599573 creator A5086353857 @default.
- W4287599573 date "2020-11-12" @default.
- W4287599573 modified "2023-09-24" @default.
- W4287599573 title "Remarks on results by Muger and Tuset on the moments of polynomials" @default.
- W4287599573 doi "https://doi.org/10.48550/arxiv.2011.06344" @default.
- W4287599573 hasPublicationYear "2020" @default.
- W4287599573 type Work @default.
- W4287599573 citedByCount "0" @default.
- W4287599573 crossrefType "posted-content" @default.
- W4287599573 hasAuthorship W4287599573A5061877874 @default.
- W4287599573 hasAuthorship W4287599573A5086353857 @default.
- W4287599573 hasBestOaLocation W42875995731 @default.
- W4287599573 hasConcept C114614502 @default.
- W4287599573 hasConcept C134306372 @default.
- W4287599573 hasConcept C138885662 @default.
- W4287599573 hasConcept C151201525 @default.
- W4287599573 hasConcept C162838799 @default.
- W4287599573 hasConcept C199360897 @default.
- W4287599573 hasConcept C2780813799 @default.
- W4287599573 hasConcept C2780990831 @default.
- W4287599573 hasConcept C33923547 @default.
- W4287599573 hasConcept C41008148 @default.
- W4287599573 hasConcept C41895202 @default.
- W4287599573 hasConcept C90119067 @default.
- W4287599573 hasConcept C97137487 @default.
- W4287599573 hasConceptScore W4287599573C114614502 @default.
- W4287599573 hasConceptScore W4287599573C134306372 @default.
- W4287599573 hasConceptScore W4287599573C138885662 @default.
- W4287599573 hasConceptScore W4287599573C151201525 @default.
- W4287599573 hasConceptScore W4287599573C162838799 @default.
- W4287599573 hasConceptScore W4287599573C199360897 @default.
- W4287599573 hasConceptScore W4287599573C2780813799 @default.
- W4287599573 hasConceptScore W4287599573C2780990831 @default.
- W4287599573 hasConceptScore W4287599573C33923547 @default.
- W4287599573 hasConceptScore W4287599573C41008148 @default.
- W4287599573 hasConceptScore W4287599573C41895202 @default.
- W4287599573 hasConceptScore W4287599573C90119067 @default.
- W4287599573 hasConceptScore W4287599573C97137487 @default.
- W4287599573 hasLocation W42875995731 @default.
- W4287599573 hasOpenAccess W4287599573 @default.
- W4287599573 hasPrimaryLocation W42875995731 @default.
- W4287599573 hasRelatedWork W10105315 @default.
- W4287599573 hasRelatedWork W12002687 @default.
- W4287599573 hasRelatedWork W12851971 @default.
- W4287599573 hasRelatedWork W16337497 @default.
- W4287599573 hasRelatedWork W21092593 @default.
- W4287599573 hasRelatedWork W39530311 @default.
- W4287599573 hasRelatedWork W47537937 @default.
- W4287599573 hasRelatedWork W51653580 @default.
- W4287599573 hasRelatedWork W58922320 @default.
- W4287599573 hasRelatedWork W26319525 @default.
- W4287599573 isParatext "false" @default.
- W4287599573 isRetracted "false" @default.
- W4287599573 workType "article" @default.