Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287629908> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4287629908 abstract "The path toward realizing the potential of seasonal forecasting and its socioeconomic benefits depends heavily on improving general circulation model based dynamical forecasting systems. To improve dynamical seasonal forecast, it is crucial to set up forecast benchmarks, and clarify forecast limitations posed by model initialization errors, formulation deficiencies, and internal climate variability. With huge cost in generating large forecast ensembles, and limited observations for forecast verification, the seasonal forecast benchmarking and diagnosing task proves challenging. In this study, we develop a probabilistic deep neural network model, drawing on a wealth of existing climate simulations to enhance seasonal forecast capability and forecast diagnosis. By leveraging complex physical relationships encoded in climate simulations, our probabilistic forecast model demonstrates favorable deterministic and probabilistic skill compared to state-of-the-art dynamical forecast systems in quasi-global seasonal forecast of precipitation and near-surface temperature. We apply this probabilistic forecast methodology to quantify the impacts of initialization errors and model formulation deficiencies in a dynamical seasonal forecasting system. We introduce the saliency analysis approach to efficiently identify the key predictors that influence seasonal variability. Furthermore, by explicitly modeling uncertainty using variational Bayes, we give a more definitive answer to how the El Nino/Southern Oscillation, the dominant mode of seasonal variability, modulates global seasonal predictability." @default.
- W4287629908 created "2022-07-25" @default.
- W4287629908 creator A5001741874 @default.
- W4287629908 creator A5009257121 @default.
- W4287629908 creator A5053231312 @default.
- W4287629908 creator A5066830167 @default.
- W4287629908 creator A5071550163 @default.
- W4287629908 creator A5074529081 @default.
- W4287629908 date "2020-10-27" @default.
- W4287629908 modified "2023-09-30" @default.
- W4287629908 title "Improving seasonal forecast using probabilistic deep learning" @default.
- W4287629908 doi "https://doi.org/10.48550/arxiv.2010.14610" @default.
- W4287629908 hasPublicationYear "2020" @default.
- W4287629908 type Work @default.
- W4287629908 citedByCount "0" @default.
- W4287629908 crossrefType "posted-content" @default.
- W4287629908 hasAuthorship W4287629908A5001741874 @default.
- W4287629908 hasAuthorship W4287629908A5009257121 @default.
- W4287629908 hasAuthorship W4287629908A5053231312 @default.
- W4287629908 hasAuthorship W4287629908A5066830167 @default.
- W4287629908 hasAuthorship W4287629908A5071550163 @default.
- W4287629908 hasAuthorship W4287629908A5074529081 @default.
- W4287629908 hasBestOaLocation W42876299081 @default.
- W4287629908 hasConcept C105795698 @default.
- W4287629908 hasConcept C114466953 @default.
- W4287629908 hasConcept C122282355 @default.
- W4287629908 hasConcept C127313418 @default.
- W4287629908 hasConcept C153294291 @default.
- W4287629908 hasConcept C154945302 @default.
- W4287629908 hasConcept C166851805 @default.
- W4287629908 hasConcept C170061395 @default.
- W4287629908 hasConcept C197640229 @default.
- W4287629908 hasConcept C199360897 @default.
- W4287629908 hasConcept C205649164 @default.
- W4287629908 hasConcept C33923547 @default.
- W4287629908 hasConcept C39432304 @default.
- W4287629908 hasConcept C41008148 @default.
- W4287629908 hasConcept C49204034 @default.
- W4287629908 hasConcept C49937458 @default.
- W4287629908 hasConceptScore W4287629908C105795698 @default.
- W4287629908 hasConceptScore W4287629908C114466953 @default.
- W4287629908 hasConceptScore W4287629908C122282355 @default.
- W4287629908 hasConceptScore W4287629908C127313418 @default.
- W4287629908 hasConceptScore W4287629908C153294291 @default.
- W4287629908 hasConceptScore W4287629908C154945302 @default.
- W4287629908 hasConceptScore W4287629908C166851805 @default.
- W4287629908 hasConceptScore W4287629908C170061395 @default.
- W4287629908 hasConceptScore W4287629908C197640229 @default.
- W4287629908 hasConceptScore W4287629908C199360897 @default.
- W4287629908 hasConceptScore W4287629908C205649164 @default.
- W4287629908 hasConceptScore W4287629908C33923547 @default.
- W4287629908 hasConceptScore W4287629908C39432304 @default.
- W4287629908 hasConceptScore W4287629908C41008148 @default.
- W4287629908 hasConceptScore W4287629908C49204034 @default.
- W4287629908 hasConceptScore W4287629908C49937458 @default.
- W4287629908 hasLocation W42876299081 @default.
- W4287629908 hasLocation W42876299082 @default.
- W4287629908 hasOpenAccess W4287629908 @default.
- W4287629908 hasPrimaryLocation W42876299081 @default.
- W4287629908 hasRelatedWork W2149649505 @default.
- W4287629908 hasRelatedWork W2171175943 @default.
- W4287629908 hasRelatedWork W2530909625 @default.
- W4287629908 hasRelatedWork W2589934124 @default.
- W4287629908 hasRelatedWork W2796586890 @default.
- W4287629908 hasRelatedWork W2991384709 @default.
- W4287629908 hasRelatedWork W2993443296 @default.
- W4287629908 hasRelatedWork W3044964828 @default.
- W4287629908 hasRelatedWork W4287629908 @default.
- W4287629908 hasRelatedWork W89988950 @default.
- W4287629908 isParatext "false" @default.
- W4287629908 isRetracted "false" @default.
- W4287629908 workType "article" @default.