Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287642425> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4287642425 abstract "We characterise the sentences in Monadic Second-order Logic (MSO) that are over finite structures equivalent to a Datalog program, in terms of an existential pebble game. We also show that for every class C of finite structures that can be expressed in MSO and is closed under homomorphisms, and for all integers l,k, there exists a *canonical* Datalog program Pi of width (l,k), that is, a Datalog program of width (l,k) which is sound for C (i.e., Pi only derives the goal predicate on a finite structure A if A is in C) and with the property that Pi derives the goal predicate whenever *some* Datalog program of width (l,k) which is sound for C derives the goal predicate. The same characterisations also hold for Guarded Second-order Logic (GSO), which properly extends MSO. To prove our results, we show that every class C in GSO whose complement is closed under homomorphisms is a finite union of constraint satisfaction problems (CSPs) of countably categorical structures." @default.
- W4287642425 created "2022-07-25" @default.
- W4287642425 creator A5024774718 @default.
- W4287642425 creator A5058729018 @default.
- W4287642425 creator A5067688686 @default.
- W4287642425 date "2020-10-12" @default.
- W4287642425 modified "2023-09-28" @default.
- W4287642425 title "Datalog-Expressibility for Monadic and Guarded Second-Order Logic" @default.
- W4287642425 doi "https://doi.org/10.48550/arxiv.2010.05677" @default.
- W4287642425 hasPublicationYear "2020" @default.
- W4287642425 type Work @default.
- W4287642425 citedByCount "0" @default.
- W4287642425 crossrefType "posted-content" @default.
- W4287642425 hasAuthorship W4287642425A5024774718 @default.
- W4287642425 hasAuthorship W4287642425A5058729018 @default.
- W4287642425 hasAuthorship W4287642425A5067688686 @default.
- W4287642425 hasBestOaLocation W42876424251 @default.
- W4287642425 hasConcept C102993220 @default.
- W4287642425 hasConcept C118615104 @default.
- W4287642425 hasConcept C124656256 @default.
- W4287642425 hasConcept C140146324 @default.
- W4287642425 hasConcept C148230440 @default.
- W4287642425 hasConcept C169896238 @default.
- W4287642425 hasConcept C199360897 @default.
- W4287642425 hasConcept C33923547 @default.
- W4287642425 hasConcept C4042151 @default.
- W4287642425 hasConcept C41008148 @default.
- W4287642425 hasConceptScore W4287642425C102993220 @default.
- W4287642425 hasConceptScore W4287642425C118615104 @default.
- W4287642425 hasConceptScore W4287642425C124656256 @default.
- W4287642425 hasConceptScore W4287642425C140146324 @default.
- W4287642425 hasConceptScore W4287642425C148230440 @default.
- W4287642425 hasConceptScore W4287642425C169896238 @default.
- W4287642425 hasConceptScore W4287642425C199360897 @default.
- W4287642425 hasConceptScore W4287642425C33923547 @default.
- W4287642425 hasConceptScore W4287642425C4042151 @default.
- W4287642425 hasConceptScore W4287642425C41008148 @default.
- W4287642425 hasLocation W42876424251 @default.
- W4287642425 hasOpenAccess W4287642425 @default.
- W4287642425 hasPrimaryLocation W42876424251 @default.
- W4287642425 hasRelatedWork W1585825542 @default.
- W4287642425 hasRelatedWork W2008735821 @default.
- W4287642425 hasRelatedWork W2033265717 @default.
- W4287642425 hasRelatedWork W2047754004 @default.
- W4287642425 hasRelatedWork W2950585779 @default.
- W4287642425 hasRelatedWork W3091966722 @default.
- W4287642425 hasRelatedWork W3105685616 @default.
- W4287642425 hasRelatedWork W3186538831 @default.
- W4287642425 hasRelatedWork W4287642425 @default.
- W4287642425 hasRelatedWork W2567706123 @default.
- W4287642425 isParatext "false" @default.
- W4287642425 isRetracted "false" @default.
- W4287642425 workType "article" @default.