Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287642938> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W4287642938 abstract "Given a graph $G$ and a positive integer $k$, the 2-Load coloring problem is to check whether there is a $2$-coloring $f:V(G) rightarrow {r,b}$ of $G$ such that for every $i in {r,b}$, there are at least $k$ edges with both end vertices colored $i$. It is known that the problem is NP-complete even on special classes of graphs like regular graphs. Gutin and Jones (Inf Process Lett 114:446-449, 2014) showed that the problem is fixed-parameter tractable by giving a kernel with at most $7k$ vertices. Barbero et al. (Algorithmica 79:211-229, 2017) obtained a kernel with less than $4k$ vertices and $O(k)$ edges, improving the earlier result. In this paper, we study the parameterized complexity of the problem with respect to structural graph parameters. We show that lcp{} cannot be solved in time $f(w)n^{o(w)}$, unless ETH fails and it can be solved in time $n^{O(w)}$, where $n$ is the size of the input graph, $w$ is the clique-width of the graph and $f$ is an arbitrary function of $w$. Next, we consider the parameters distance to cluster graphs, distance to co-cluster graphs and distance to threshold graphs, which are weaker than the parameter clique-width and show that the problem is fixed-parameter tractable (FPT) with respect to these parameters. Finally, we show that lcp{} is NP-complete even on bipartite graphs and split graphs." @default.
- W4287642938 created "2022-07-25" @default.
- W4287642938 creator A5034376489 @default.
- W4287642938 date "2020-10-11" @default.
- W4287642938 modified "2023-09-25" @default.
- W4287642938 title "On Structural Parameterizations of Load Coloring" @default.
- W4287642938 doi "https://doi.org/10.48550/arxiv.2010.05186" @default.
- W4287642938 hasPublicationYear "2020" @default.
- W4287642938 type Work @default.
- W4287642938 citedByCount "0" @default.
- W4287642938 crossrefType "posted-content" @default.
- W4287642938 hasAuthorship W4287642938A5034376489 @default.
- W4287642938 hasBestOaLocation W42876429381 @default.
- W4287642938 hasConcept C102192266 @default.
- W4287642938 hasConcept C114614502 @default.
- W4287642938 hasConcept C118615104 @default.
- W4287642938 hasConcept C132525143 @default.
- W4287642938 hasConcept C160446614 @default.
- W4287642938 hasConcept C165464430 @default.
- W4287642938 hasConcept C197657726 @default.
- W4287642938 hasConcept C2777035058 @default.
- W4287642938 hasConcept C33923547 @default.
- W4287642938 hasConcept C8554925 @default.
- W4287642938 hasConceptScore W4287642938C102192266 @default.
- W4287642938 hasConceptScore W4287642938C114614502 @default.
- W4287642938 hasConceptScore W4287642938C118615104 @default.
- W4287642938 hasConceptScore W4287642938C132525143 @default.
- W4287642938 hasConceptScore W4287642938C160446614 @default.
- W4287642938 hasConceptScore W4287642938C165464430 @default.
- W4287642938 hasConceptScore W4287642938C197657726 @default.
- W4287642938 hasConceptScore W4287642938C2777035058 @default.
- W4287642938 hasConceptScore W4287642938C33923547 @default.
- W4287642938 hasConceptScore W4287642938C8554925 @default.
- W4287642938 hasLocation W42876429381 @default.
- W4287642938 hasOpenAccess W4287642938 @default.
- W4287642938 hasPrimaryLocation W42876429381 @default.
- W4287642938 hasRelatedWork W1839843 @default.
- W4287642938 hasRelatedWork W23749850 @default.
- W4287642938 hasRelatedWork W32464776 @default.
- W4287642938 hasRelatedWork W47791626 @default.
- W4287642938 hasRelatedWork W49573773 @default.
- W4287642938 hasRelatedWork W57303768 @default.
- W4287642938 hasRelatedWork W62146694 @default.
- W4287642938 hasRelatedWork W62939430 @default.
- W4287642938 hasRelatedWork W63807318 @default.
- W4287642938 hasRelatedWork W25077797 @default.
- W4287642938 isParatext "false" @default.
- W4287642938 isRetracted "false" @default.
- W4287642938 workType "article" @default.