Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287646925> ?p ?o ?g. }
- W4287646925 abstract "In the midst of the coronavirus disease 2019 (COVID-19) outbreak, chest X-ray (CXR) imaging is playing an important role in the diagnosis and monitoring of patients with COVID-19. Machine learning solutions have been shown to be useful for X-ray analysis and classification in a range of medical contexts. The purpose of this study is to create and evaluate a machine learning model for diagnosis of COVID-19, and to provide a tool for searching for similar patients according to their X-ray scans. In this retrospective study, a classifier was built using a pre-trained deep learning model (ReNet50) and enhanced by data augmentation and lung segmentation to detect COVID-19 in frontal CXR images collected between January 2018 and July 2020 in four hospitals in Israel. A nearest-neighbors algorithm was implemented based on the network results that identifies the images most similar to a given image. The model was evaluated using accuracy, sensitivity, area under the curve (AUC) of receiver operating characteristic (ROC) curve and of the precision-recall (P-R) curve. The dataset sourced for this study includes 2362 CXRs, balanced for positive and negative COVID-19, from 1384 patients (63 +/- 18 years, 552 men). Our model achieved 89.7% (314/350) accuracy and 87.1% (156/179) sensitivity in classification of COVID-19 on a test dataset comprising 15% (350 of 2326) of the original data, with AUC of ROC 0.95 and AUC of the P-R curve 0.94. For each image we retrieve images with the most similar DNN-based image embeddings; these can be used to compare with previous cases." @default.
- W4287646925 created "2022-07-25" @default.
- W4287646925 creator A5000731741 @default.
- W4287646925 creator A5003564979 @default.
- W4287646925 creator A5005294089 @default.
- W4287646925 creator A5005913897 @default.
- W4287646925 creator A5011274609 @default.
- W4287646925 creator A5014929467 @default.
- W4287646925 creator A5021097191 @default.
- W4287646925 creator A5023956408 @default.
- W4287646925 creator A5027948735 @default.
- W4287646925 creator A5033566759 @default.
- W4287646925 creator A5043897671 @default.
- W4287646925 creator A5048500167 @default.
- W4287646925 creator A5054490172 @default.
- W4287646925 creator A5056499278 @default.
- W4287646925 creator A5068073869 @default.
- W4287646925 creator A5068363951 @default.
- W4287646925 creator A5070977949 @default.
- W4287646925 creator A5072500334 @default.
- W4287646925 creator A5073980141 @default.
- W4287646925 creator A5074055566 @default.
- W4287646925 creator A5077001189 @default.
- W4287646925 creator A5079073612 @default.
- W4287646925 creator A5079773574 @default.
- W4287646925 creator A5083082145 @default.
- W4287646925 creator A5086046541 @default.
- W4287646925 creator A5087022780 @default.
- W4287646925 creator A5087267847 @default.
- W4287646925 date "2020-10-03" @default.
- W4287646925 modified "2023-10-03" @default.
- W4287646925 title "COVID-19 Classification of X-ray Images Using Deep Neural Networks" @default.
- W4287646925 doi "https://doi.org/10.48550/arxiv.2010.01362" @default.
- W4287646925 hasPublicationYear "2020" @default.
- W4287646925 type Work @default.
- W4287646925 citedByCount "0" @default.
- W4287646925 crossrefType "posted-content" @default.
- W4287646925 hasAuthorship W4287646925A5000731741 @default.
- W4287646925 hasAuthorship W4287646925A5003564979 @default.
- W4287646925 hasAuthorship W4287646925A5005294089 @default.
- W4287646925 hasAuthorship W4287646925A5005913897 @default.
- W4287646925 hasAuthorship W4287646925A5011274609 @default.
- W4287646925 hasAuthorship W4287646925A5014929467 @default.
- W4287646925 hasAuthorship W4287646925A5021097191 @default.
- W4287646925 hasAuthorship W4287646925A5023956408 @default.
- W4287646925 hasAuthorship W4287646925A5027948735 @default.
- W4287646925 hasAuthorship W4287646925A5033566759 @default.
- W4287646925 hasAuthorship W4287646925A5043897671 @default.
- W4287646925 hasAuthorship W4287646925A5048500167 @default.
- W4287646925 hasAuthorship W4287646925A5054490172 @default.
- W4287646925 hasAuthorship W4287646925A5056499278 @default.
- W4287646925 hasAuthorship W4287646925A5068073869 @default.
- W4287646925 hasAuthorship W4287646925A5068363951 @default.
- W4287646925 hasAuthorship W4287646925A5070977949 @default.
- W4287646925 hasAuthorship W4287646925A5072500334 @default.
- W4287646925 hasAuthorship W4287646925A5073980141 @default.
- W4287646925 hasAuthorship W4287646925A5074055566 @default.
- W4287646925 hasAuthorship W4287646925A5077001189 @default.
- W4287646925 hasAuthorship W4287646925A5079073612 @default.
- W4287646925 hasAuthorship W4287646925A5079773574 @default.
- W4287646925 hasAuthorship W4287646925A5083082145 @default.
- W4287646925 hasAuthorship W4287646925A5086046541 @default.
- W4287646925 hasAuthorship W4287646925A5087022780 @default.
- W4287646925 hasAuthorship W4287646925A5087267847 @default.
- W4287646925 hasBestOaLocation W42876469251 @default.
- W4287646925 hasConcept C108583219 @default.
- W4287646925 hasConcept C112705442 @default.
- W4287646925 hasConcept C119857082 @default.
- W4287646925 hasConcept C126322002 @default.
- W4287646925 hasConcept C127413603 @default.
- W4287646925 hasConcept C153180895 @default.
- W4287646925 hasConcept C154945302 @default.
- W4287646925 hasConcept C21200559 @default.
- W4287646925 hasConcept C24326235 @default.
- W4287646925 hasConcept C2779134260 @default.
- W4287646925 hasConcept C3008058167 @default.
- W4287646925 hasConcept C3020225094 @default.
- W4287646925 hasConcept C41008148 @default.
- W4287646925 hasConcept C50644808 @default.
- W4287646925 hasConcept C524204448 @default.
- W4287646925 hasConcept C58471807 @default.
- W4287646925 hasConcept C71924100 @default.
- W4287646925 hasConcept C81669768 @default.
- W4287646925 hasConcept C89600930 @default.
- W4287646925 hasConcept C95623464 @default.
- W4287646925 hasConceptScore W4287646925C108583219 @default.
- W4287646925 hasConceptScore W4287646925C112705442 @default.
- W4287646925 hasConceptScore W4287646925C119857082 @default.
- W4287646925 hasConceptScore W4287646925C126322002 @default.
- W4287646925 hasConceptScore W4287646925C127413603 @default.
- W4287646925 hasConceptScore W4287646925C153180895 @default.
- W4287646925 hasConceptScore W4287646925C154945302 @default.
- W4287646925 hasConceptScore W4287646925C21200559 @default.
- W4287646925 hasConceptScore W4287646925C24326235 @default.
- W4287646925 hasConceptScore W4287646925C2779134260 @default.
- W4287646925 hasConceptScore W4287646925C3008058167 @default.
- W4287646925 hasConceptScore W4287646925C3020225094 @default.
- W4287646925 hasConceptScore W4287646925C41008148 @default.
- W4287646925 hasConceptScore W4287646925C50644808 @default.
- W4287646925 hasConceptScore W4287646925C524204448 @default.