Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287654826> ?p ?o ?g. }
- W4287654826 endingPage "105190" @default.
- W4287654826 startingPage "105190" @default.
- W4287654826 abstract "A corrosive sulfate environment can cause strong deterioration and destruction of reinforced concrete (RC) underground structures and seriously reduce their service life. Thus, it is very important to predict the service life of RC underground structures in corrosive sulfate environments. However, the service life of underground structures is affected by numerous complicated engineering and environmental factors and cannot be determined by traditional theoretical and experimental investigations. Therefore, to solve this problem, a new data-driven method based on Harris hawks optimizing genetic programming (HHO-GP) is proposed. In this new method, to improve the traditional genetic programming (GP), a new global optimization algorithm called Harris hawks optimization (HHO) is adopted to optimize its main controlling parameters. Based on 25 groups of real engineering data, the life prediction model of underground structures in corrosive sulfate environments with 12 main engineering and environmental influence factors is established by the HHO-GP method. The results show that the average relative training error (5.5%) and predicting error (6.3%) of the new prediction model are small. Therefore, the proposed HHO-GP method can construct a suitable life prediction model based on only real engineering data, regardless of how many complicated influencing factors are considered. Moreover, our data-driven life prediction model is described by one explicit polynomial function based on 12 influencing factors. Thus, it can be applied in real engineering simply and easily. Finally, the influence of the main controlling parameters of the HHO-GP on its accuracy and efficiency is analyzed. The results reveal that considering the computing accuracy and efficiency and the model completeness, the small population size and maximum iterations of HHO are suitable, whose recommended values are all 15. The population size and maximum number of iterations of GP have little influence on the prediction accuracy. Their recommended values all can be 50." @default.
- W4287654826 created "2022-07-25" @default.
- W4287654826 creator A5021084228 @default.
- W4287654826 creator A5036852960 @default.
- W4287654826 creator A5040759162 @default.
- W4287654826 creator A5042532963 @default.
- W4287654826 creator A5049486408 @default.
- W4287654826 creator A5075871728 @default.
- W4287654826 date "2022-10-01" @default.
- W4287654826 modified "2023-09-27" @default.
- W4287654826 title "Life prediction of underground structure by sulfate corrosion using Harris hawks optimizing genetic programming" @default.
- W4287654826 cites W1733903446 @default.
- W4287654826 cites W1842075455 @default.
- W4287654826 cites W1969071819 @default.
- W4287654826 cites W1982384448 @default.
- W4287654826 cites W1982503350 @default.
- W4287654826 cites W2018126893 @default.
- W4287654826 cites W2021072592 @default.
- W4287654826 cites W2037099174 @default.
- W4287654826 cites W2048815341 @default.
- W4287654826 cites W2064692668 @default.
- W4287654826 cites W2068909762 @default.
- W4287654826 cites W2084427257 @default.
- W4287654826 cites W2086231373 @default.
- W4287654826 cites W2121215049 @default.
- W4287654826 cites W2295907279 @default.
- W4287654826 cites W2326546478 @default.
- W4287654826 cites W2574225885 @default.
- W4287654826 cites W2582587579 @default.
- W4287654826 cites W2781624721 @default.
- W4287654826 cites W2788650673 @default.
- W4287654826 cites W2909796381 @default.
- W4287654826 cites W2919979744 @default.
- W4287654826 cites W2944402009 @default.
- W4287654826 cites W2954982419 @default.
- W4287654826 cites W2977905330 @default.
- W4287654826 cites W3005326954 @default.
- W4287654826 cites W3010913607 @default.
- W4287654826 cites W3038415525 @default.
- W4287654826 cites W3091034071 @default.
- W4287654826 cites W3096786988 @default.
- W4287654826 cites W3119051141 @default.
- W4287654826 cites W3132554300 @default.
- W4287654826 cites W3139484821 @default.
- W4287654826 cites W3159542470 @default.
- W4287654826 cites W3167921846 @default.
- W4287654826 cites W3212797097 @default.
- W4287654826 cites W4210401277 @default.
- W4287654826 cites W4237610041 @default.
- W4287654826 cites W48278325 @default.
- W4287654826 cites W653328448 @default.
- W4287654826 doi "https://doi.org/10.1016/j.engappai.2022.105190" @default.
- W4287654826 hasPublicationYear "2022" @default.
- W4287654826 type Work @default.
- W4287654826 citedByCount "1" @default.
- W4287654826 countsByYear W42876548262022 @default.
- W4287654826 crossrefType "journal-article" @default.
- W4287654826 hasAuthorship W4287654826A5021084228 @default.
- W4287654826 hasAuthorship W4287654826A5036852960 @default.
- W4287654826 hasAuthorship W4287654826A5040759162 @default.
- W4287654826 hasAuthorship W4287654826A5042532963 @default.
- W4287654826 hasAuthorship W4287654826A5049486408 @default.
- W4287654826 hasAuthorship W4287654826A5075871728 @default.
- W4287654826 hasConcept C103208741 @default.
- W4287654826 hasConcept C110332635 @default.
- W4287654826 hasConcept C119857082 @default.
- W4287654826 hasConcept C124101348 @default.
- W4287654826 hasConcept C126255220 @default.
- W4287654826 hasConcept C127413603 @default.
- W4287654826 hasConcept C154945302 @default.
- W4287654826 hasConcept C200601418 @default.
- W4287654826 hasConcept C33923547 @default.
- W4287654826 hasConcept C41008148 @default.
- W4287654826 hasConcept C8880873 @default.
- W4287654826 hasConceptScore W4287654826C103208741 @default.
- W4287654826 hasConceptScore W4287654826C110332635 @default.
- W4287654826 hasConceptScore W4287654826C119857082 @default.
- W4287654826 hasConceptScore W4287654826C124101348 @default.
- W4287654826 hasConceptScore W4287654826C126255220 @default.
- W4287654826 hasConceptScore W4287654826C127413603 @default.
- W4287654826 hasConceptScore W4287654826C154945302 @default.
- W4287654826 hasConceptScore W4287654826C200601418 @default.
- W4287654826 hasConceptScore W4287654826C33923547 @default.
- W4287654826 hasConceptScore W4287654826C41008148 @default.
- W4287654826 hasConceptScore W4287654826C8880873 @default.
- W4287654826 hasLocation W42876548261 @default.
- W4287654826 hasOpenAccess W4287654826 @default.
- W4287654826 hasPrimaryLocation W42876548261 @default.
- W4287654826 hasRelatedWork W2012737462 @default.
- W4287654826 hasRelatedWork W2104680372 @default.
- W4287654826 hasRelatedWork W2130927504 @default.
- W4287654826 hasRelatedWork W2347219288 @default.
- W4287654826 hasRelatedWork W2347722501 @default.
- W4287654826 hasRelatedWork W2348097614 @default.
- W4287654826 hasRelatedWork W2358885468 @default.
- W4287654826 hasRelatedWork W2386372880 @default.
- W4287654826 hasRelatedWork W2387271259 @default.
- W4287654826 hasRelatedWork W4287654826 @default.