Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287661633> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4287661633 abstract "Brain connectivity networks, derived from magnetic resonance imaging (MRI), non-invasively quantify the relationship in function, structure, and morphology between two brain regions of interest (ROIs) and give insights into gender-related connectional differences. However, to the best of our knowledge, studies on gender differences in brain connectivity were limited to investigating pairwise (i.e., low-order) relationship ROIs, overlooking the complex high-order interconnectedness of the brain as a network. To address this limitation, brain multiplexes have been introduced to model the relationship between at least two different brain networks. However, this inhibits their application to datasets with single brain networks such as functional networks. To fill this gap, we propose the first work on predicting brain multiplexes from a source network to investigate gender differences. Recently, generative adversarial networks (GANs) submerged the field of medical data synthesis. However, although conventional GANs work well on images, they cannot handle brain networks due to their non-Euclidean topological structure. Differently, in this paper, we tap into the nascent field of geometric-GANs (G-GAN) to design a deep multiplex prediction architecture comprising (i) a geometric source to target network translator mimicking a U-Net architecture with skip connections and (ii) a conditional discriminator which classifies predicted target intra-layers by conditioning on the multiplex source intra-layers. Such architecture simultaneously learns the latent source network representation and the deep non-linear mapping from the source to target multiplex intra-layers. Our experiments on a large dataset demonstrated that predicted multiplexes significantly boost gender classification accuracy compared with source networks and identifies both low and high-order gender-specific multiplex connections." @default.
- W4287661633 created "2022-07-25" @default.
- W4287661633 creator A5048784346 @default.
- W4287661633 creator A5059902971 @default.
- W4287661633 date "2020-09-24" @default.
- W4287661633 modified "2023-09-24" @default.
- W4287661633 title "Adversarial Brain Multiplex Prediction From a Single Network for High-Order Connectional Gender-Specific Brain Mapping" @default.
- W4287661633 doi "https://doi.org/10.48550/arxiv.2009.11524" @default.
- W4287661633 hasPublicationYear "2020" @default.
- W4287661633 type Work @default.
- W4287661633 citedByCount "0" @default.
- W4287661633 crossrefType "posted-content" @default.
- W4287661633 hasAuthorship W4287661633A5048784346 @default.
- W4287661633 hasAuthorship W4287661633A5059902971 @default.
- W4287661633 hasBestOaLocation W42876616331 @default.
- W4287661633 hasConcept C153180895 @default.
- W4287661633 hasConcept C154945302 @default.
- W4287661633 hasConcept C17744445 @default.
- W4287661633 hasConcept C184898388 @default.
- W4287661633 hasConcept C193415008 @default.
- W4287661633 hasConcept C199539241 @default.
- W4287661633 hasConcept C202444582 @default.
- W4287661633 hasConcept C2776359362 @default.
- W4287661633 hasConcept C2779803651 @default.
- W4287661633 hasConcept C2781188995 @default.
- W4287661633 hasConcept C31258907 @default.
- W4287661633 hasConcept C33923547 @default.
- W4287661633 hasConcept C41008148 @default.
- W4287661633 hasConcept C60644358 @default.
- W4287661633 hasConcept C76155785 @default.
- W4287661633 hasConcept C86803240 @default.
- W4287661633 hasConcept C94625758 @default.
- W4287661633 hasConcept C94915269 @default.
- W4287661633 hasConcept C9652623 @default.
- W4287661633 hasConceptScore W4287661633C153180895 @default.
- W4287661633 hasConceptScore W4287661633C154945302 @default.
- W4287661633 hasConceptScore W4287661633C17744445 @default.
- W4287661633 hasConceptScore W4287661633C184898388 @default.
- W4287661633 hasConceptScore W4287661633C193415008 @default.
- W4287661633 hasConceptScore W4287661633C199539241 @default.
- W4287661633 hasConceptScore W4287661633C202444582 @default.
- W4287661633 hasConceptScore W4287661633C2776359362 @default.
- W4287661633 hasConceptScore W4287661633C2779803651 @default.
- W4287661633 hasConceptScore W4287661633C2781188995 @default.
- W4287661633 hasConceptScore W4287661633C31258907 @default.
- W4287661633 hasConceptScore W4287661633C33923547 @default.
- W4287661633 hasConceptScore W4287661633C41008148 @default.
- W4287661633 hasConceptScore W4287661633C60644358 @default.
- W4287661633 hasConceptScore W4287661633C76155785 @default.
- W4287661633 hasConceptScore W4287661633C86803240 @default.
- W4287661633 hasConceptScore W4287661633C94625758 @default.
- W4287661633 hasConceptScore W4287661633C94915269 @default.
- W4287661633 hasConceptScore W4287661633C9652623 @default.
- W4287661633 hasLocation W42876616331 @default.
- W4287661633 hasOpenAccess W4287661633 @default.
- W4287661633 hasPrimaryLocation W42876616331 @default.
- W4287661633 hasRelatedWork W2556027894 @default.
- W4287661633 hasRelatedWork W2743258233 @default.
- W4287661633 hasRelatedWork W2792285786 @default.
- W4287661633 hasRelatedWork W2892411133 @default.
- W4287661633 hasRelatedWork W2907729382 @default.
- W4287661633 hasRelatedWork W3007383607 @default.
- W4287661633 hasRelatedWork W3088917303 @default.
- W4287661633 hasRelatedWork W3094969701 @default.
- W4287661633 hasRelatedWork W3207725967 @default.
- W4287661633 hasRelatedWork W4287661633 @default.
- W4287661633 isParatext "false" @default.
- W4287661633 isRetracted "false" @default.
- W4287661633 workType "article" @default.