Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287662392> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4287662392 abstract "Pirashvili's Dold-Kan type theorem for finite pointed sets follows from the identification in terms of surjections of the morphisms between the tensor powers of a functor playing the role of the augmentation ideal; these functors are projective. We give an unpointed analogue of this result: namely, we compute the morphisms between the tensor powers of the corresponding functor in the unpointed context. We also calculate the Ext groups between such objects, in particular showing that these functors are not projective; this is an important difference between the pointed and unpointed contexts. This work is motivated by our functorial analysis of the higher Hochschild homology of a wedge of circles." @default.
- W4287662392 created "2022-07-25" @default.
- W4287662392 creator A5035862308 @default.
- W4287662392 creator A5062304116 @default.
- W4287662392 date "2020-09-23" @default.
- W4287662392 modified "2023-09-26" @default.
- W4287662392 title "A Pirashvili-type theorem for functors on non-empty finite sets" @default.
- W4287662392 doi "https://doi.org/10.48550/arxiv.2009.10966" @default.
- W4287662392 hasPublicationYear "2020" @default.
- W4287662392 type Work @default.
- W4287662392 citedByCount "0" @default.
- W4287662392 crossrefType "posted-content" @default.
- W4287662392 hasAuthorship W4287662392A5035862308 @default.
- W4287662392 hasAuthorship W4287662392A5062304116 @default.
- W4287662392 hasBestOaLocation W42876623921 @default.
- W4287662392 hasConcept C136119220 @default.
- W4287662392 hasConcept C137212723 @default.
- W4287662392 hasConcept C151730666 @default.
- W4287662392 hasConcept C156772000 @default.
- W4287662392 hasConcept C202444582 @default.
- W4287662392 hasConcept C2776648750 @default.
- W4287662392 hasConcept C2779343474 @default.
- W4287662392 hasConcept C33464968 @default.
- W4287662392 hasConcept C33923547 @default.
- W4287662392 hasConcept C48808802 @default.
- W4287662392 hasConcept C78606066 @default.
- W4287662392 hasConcept C86803240 @default.
- W4287662392 hasConcept C99633028 @default.
- W4287662392 hasConceptScore W4287662392C136119220 @default.
- W4287662392 hasConceptScore W4287662392C137212723 @default.
- W4287662392 hasConceptScore W4287662392C151730666 @default.
- W4287662392 hasConceptScore W4287662392C156772000 @default.
- W4287662392 hasConceptScore W4287662392C202444582 @default.
- W4287662392 hasConceptScore W4287662392C2776648750 @default.
- W4287662392 hasConceptScore W4287662392C2779343474 @default.
- W4287662392 hasConceptScore W4287662392C33464968 @default.
- W4287662392 hasConceptScore W4287662392C33923547 @default.
- W4287662392 hasConceptScore W4287662392C48808802 @default.
- W4287662392 hasConceptScore W4287662392C78606066 @default.
- W4287662392 hasConceptScore W4287662392C86803240 @default.
- W4287662392 hasConceptScore W4287662392C99633028 @default.
- W4287662392 hasLocation W42876623921 @default.
- W4287662392 hasLocation W42876623922 @default.
- W4287662392 hasLocation W42876623923 @default.
- W4287662392 hasOpenAccess W4287662392 @default.
- W4287662392 hasPrimaryLocation W42876623921 @default.
- W4287662392 hasRelatedWork W1611975502 @default.
- W4287662392 hasRelatedWork W1809206118 @default.
- W4287662392 hasRelatedWork W2074909326 @default.
- W4287662392 hasRelatedWork W2118517576 @default.
- W4287662392 hasRelatedWork W2363588618 @default.
- W4287662392 hasRelatedWork W2408525916 @default.
- W4287662392 hasRelatedWork W3088583837 @default.
- W4287662392 hasRelatedWork W4287662392 @default.
- W4287662392 hasRelatedWork W4300183163 @default.
- W4287662392 hasRelatedWork W4302592599 @default.
- W4287662392 isParatext "false" @default.
- W4287662392 isRetracted "false" @default.
- W4287662392 workType "article" @default.