Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287673204> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W4287673204 abstract "begin{document} begin This paper continues work of the earlier articles with the same title. For two classes of modular forms $f$: begin{itemize} item para-Eisenstein series $alpha_{k}$ and item coefficient forms ${}_a ell_{k}$, where $k in mathbb{N}$ and $a$ is a non-constant element of $mathbb{F}_{q}[T]$, end{itemize} the growth behavior on the fundamental domain and the zero loci $Omega(f)$ as well as their images $mathcal{BT}(f)$ in the Bruhat-Tits building $mathcal{BT}$ are studied. We obtain a complete description for $f = alpha_{k}$ and for those of the forms ${}_{a}ell_{k}$ where $k leq deg a$. It turns out that in these cases, $alpha_{k}$ and ${}_{a}ell_{k}$ are strongly related, e.g., $mathcal{BT}({}_{a}ell_{k}) = mathcal{BT}(alpha_{k})$, and that $mathcal{BT}(alpha_{k})$ is the set of $mathbb{Q}$-points of a full subcomplex of $mathcal{BT}$ with nice properties. As a case study, we present in detail the outcome for the forms $alpha_{2}$ in rank 3. end{abstract} maketitle end{document}" @default.
- W4287673204 created "2022-07-25" @default.
- W4287673204 creator A5070406000 @default.
- W4287673204 date "2020-09-03" @default.
- W4287673204 modified "2023-10-16" @default.
- W4287673204 title "On Drinfeld modular forms of higher rank V: The behavior of distinguished forms on the fundamental domain" @default.
- W4287673204 doi "https://doi.org/10.48550/arxiv.2009.01622" @default.
- W4287673204 hasPublicationYear "2020" @default.
- W4287673204 type Work @default.
- W4287673204 citedByCount "0" @default.
- W4287673204 crossrefType "posted-content" @default.
- W4287673204 hasAuthorship W4287673204A5070406000 @default.
- W4287673204 hasBestOaLocation W42876732041 @default.
- W4287673204 hasConcept C114614502 @default.
- W4287673204 hasConcept C121332964 @default.
- W4287673204 hasConcept C134306372 @default.
- W4287673204 hasConcept C138885662 @default.
- W4287673204 hasConcept C164226766 @default.
- W4287673204 hasConcept C2779557605 @default.
- W4287673204 hasConcept C2780813799 @default.
- W4287673204 hasConcept C33923547 @default.
- W4287673204 hasConcept C36503486 @default.
- W4287673204 hasConcept C41895202 @default.
- W4287673204 hasConcept C62520636 @default.
- W4287673204 hasConceptScore W4287673204C114614502 @default.
- W4287673204 hasConceptScore W4287673204C121332964 @default.
- W4287673204 hasConceptScore W4287673204C134306372 @default.
- W4287673204 hasConceptScore W4287673204C138885662 @default.
- W4287673204 hasConceptScore W4287673204C164226766 @default.
- W4287673204 hasConceptScore W4287673204C2779557605 @default.
- W4287673204 hasConceptScore W4287673204C2780813799 @default.
- W4287673204 hasConceptScore W4287673204C33923547 @default.
- W4287673204 hasConceptScore W4287673204C36503486 @default.
- W4287673204 hasConceptScore W4287673204C41895202 @default.
- W4287673204 hasConceptScore W4287673204C62520636 @default.
- W4287673204 hasLocation W42876732041 @default.
- W4287673204 hasOpenAccess W4287673204 @default.
- W4287673204 hasPrimaryLocation W42876732041 @default.
- W4287673204 hasRelatedWork W10394335 @default.
- W4287673204 hasRelatedWork W10517098 @default.
- W4287673204 hasRelatedWork W11663883 @default.
- W4287673204 hasRelatedWork W12472064 @default.
- W4287673204 hasRelatedWork W14533060 @default.
- W4287673204 hasRelatedWork W16856827 @default.
- W4287673204 hasRelatedWork W23374689 @default.
- W4287673204 hasRelatedWork W6990490 @default.
- W4287673204 hasRelatedWork W895401 @default.
- W4287673204 hasRelatedWork W18959616 @default.
- W4287673204 isParatext "false" @default.
- W4287673204 isRetracted "false" @default.
- W4287673204 workType "article" @default.