Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287683227> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4287683227 abstract "The capacity of finite state channels (FSCs) has been established as the limit of a sequence of multi-letter expressions only and, despite tremendous effort, a corresponding finite-letter characterization remains unknown to date. This paper analyzes the capacity of FSCs from a fundamental, algorithmic point of view by studying whether or not the corresponding achievability and converse bounds on the capacity can be computed algorithmically. For this purpose, the concept of Turing machines is used which provide the fundamental performance limits of digital computers. To this end, computable continuous functions are studied and properties of computable sequences of such functions are identified. It is shown that the capacity of FSCs is not Banach-Mazur computable which is the weakest form of computability. This implies that there is no algorithm (or Turing machine) that can compute the capacity of a given FSC. As a consequence, it is then shown that either the achievability or converse must yield a bound that is not Banach-Mazur computable. This also means that there exist FSCs for which computable lower and upper bounds can never be tight. To this end, it is further shown that the capacity of FSCs is not approximable, which is an even stricter requirement than non-computability. This implies that it is impossible to find a finite-letter entropic characterization of the capacity of general FSCs. All results hold even for finite input and output alphabets and finite state set. Finally, connections to the theory of effective analysis are discussed. Here, results are only allowed to be proved in a constructive way, while existence results, e.g., proved based on the axiom of choice, are forbidden." @default.
- W4287683227 created "2022-07-26" @default.
- W4287683227 creator A5000732219 @default.
- W4287683227 creator A5038203207 @default.
- W4287683227 creator A5042307561 @default.
- W4287683227 date "2020-08-30" @default.
- W4287683227 modified "2023-09-24" @default.
- W4287683227 title "Shannon Meets Turing: Non-Computability and Non-Approximability of the Finite State Channel Capacity" @default.
- W4287683227 doi "https://doi.org/10.48550/arxiv.2008.13270" @default.
- W4287683227 hasPublicationYear "2020" @default.
- W4287683227 type Work @default.
- W4287683227 citedByCount "0" @default.
- W4287683227 crossrefType "posted-content" @default.
- W4287683227 hasAuthorship W4287683227A5000732219 @default.
- W4287683227 hasAuthorship W4287683227A5038203207 @default.
- W4287683227 hasAuthorship W4287683227A5042307561 @default.
- W4287683227 hasBestOaLocation W42876832271 @default.
- W4287683227 hasConcept C11413529 @default.
- W4287683227 hasConcept C118615104 @default.
- W4287683227 hasConcept C134306372 @default.
- W4287683227 hasConcept C152062344 @default.
- W4287683227 hasConcept C162392398 @default.
- W4287683227 hasConcept C177264268 @default.
- W4287683227 hasConcept C199360897 @default.
- W4287683227 hasConcept C2524010 @default.
- W4287683227 hasConcept C2776809875 @default.
- W4287683227 hasConcept C2778112365 @default.
- W4287683227 hasConcept C29248071 @default.
- W4287683227 hasConcept C33923547 @default.
- W4287683227 hasConcept C41008148 @default.
- W4287683227 hasConcept C45374587 @default.
- W4287683227 hasConcept C54271186 @default.
- W4287683227 hasConcept C54355233 @default.
- W4287683227 hasConcept C77553402 @default.
- W4287683227 hasConcept C86803240 @default.
- W4287683227 hasConcept C9870796 @default.
- W4287683227 hasConceptScore W4287683227C11413529 @default.
- W4287683227 hasConceptScore W4287683227C118615104 @default.
- W4287683227 hasConceptScore W4287683227C134306372 @default.
- W4287683227 hasConceptScore W4287683227C152062344 @default.
- W4287683227 hasConceptScore W4287683227C162392398 @default.
- W4287683227 hasConceptScore W4287683227C177264268 @default.
- W4287683227 hasConceptScore W4287683227C199360897 @default.
- W4287683227 hasConceptScore W4287683227C2524010 @default.
- W4287683227 hasConceptScore W4287683227C2776809875 @default.
- W4287683227 hasConceptScore W4287683227C2778112365 @default.
- W4287683227 hasConceptScore W4287683227C29248071 @default.
- W4287683227 hasConceptScore W4287683227C33923547 @default.
- W4287683227 hasConceptScore W4287683227C41008148 @default.
- W4287683227 hasConceptScore W4287683227C45374587 @default.
- W4287683227 hasConceptScore W4287683227C54271186 @default.
- W4287683227 hasConceptScore W4287683227C54355233 @default.
- W4287683227 hasConceptScore W4287683227C77553402 @default.
- W4287683227 hasConceptScore W4287683227C86803240 @default.
- W4287683227 hasConceptScore W4287683227C9870796 @default.
- W4287683227 hasLocation W42876832271 @default.
- W4287683227 hasOpenAccess W4287683227 @default.
- W4287683227 hasPrimaryLocation W42876832271 @default.
- W4287683227 hasRelatedWork W10148010 @default.
- W4287683227 hasRelatedWork W12631801 @default.
- W4287683227 hasRelatedWork W1943234 @default.
- W4287683227 hasRelatedWork W2074371 @default.
- W4287683227 hasRelatedWork W2287920 @default.
- W4287683227 hasRelatedWork W6508898 @default.
- W4287683227 hasRelatedWork W6819771 @default.
- W4287683227 hasRelatedWork W723740 @default.
- W4287683227 hasRelatedWork W7272699 @default.
- W4287683227 hasRelatedWork W954689 @default.
- W4287683227 isParatext "false" @default.
- W4287683227 isRetracted "false" @default.
- W4287683227 workType "article" @default.