Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287686077> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4287686077 abstract "Let $X$ be a simplicial complex on vertex set $V$. We say that $X$ is $d$-representable if it is isomorphic to the nerve of a family of convex sets in $mathbb{R}^d$. We define the $d$-boxicity of $X$ as the minimal $k$ such that $X$ can be written as the intersection of $k$ $d$-representable simplicial complexes. This generalizes the notion of boxicity of a graph, defined by Roberts. A missing face of $X$ is a set $tausubset V$ such that $taunotin X$ but $sigmain X$ for any $sigmasubsetneq tau$. We prove that the $d$-boxicity of a simplicial complex on $n$ vertices without missing faces of dimension larger than $d$ is at most $leftlfloorfrac{1}{d+1}binom{n}{d}rightrfloor$. The bound is sharp: the $d$-boxicity of a simplicial complex whose set of missing faces form a Steiner $(d,d+1,n)$-system is exactly $frac{1}{d+1}binom{n}{d}$." @default.
- W4287686077 created "2022-07-26" @default.
- W4287686077 creator A5075680964 @default.
- W4287686077 date "2020-08-23" @default.
- W4287686077 modified "2023-09-25" @default.
- W4287686077 title "Representability and boxicity of simplicial complexes" @default.
- W4287686077 doi "https://doi.org/10.48550/arxiv.2008.09997" @default.
- W4287686077 hasPublicationYear "2020" @default.
- W4287686077 type Work @default.
- W4287686077 citedByCount "0" @default.
- W4287686077 crossrefType "posted-content" @default.
- W4287686077 hasAuthorship W4287686077A5075680964 @default.
- W4287686077 hasBestOaLocation W42876860771 @default.
- W4287686077 hasConcept C114614502 @default.
- W4287686077 hasConcept C118615104 @default.
- W4287686077 hasConcept C127413603 @default.
- W4287686077 hasConcept C127634017 @default.
- W4287686077 hasConcept C132525143 @default.
- W4287686077 hasConcept C146867743 @default.
- W4287686077 hasConcept C146978453 @default.
- W4287686077 hasConcept C187929450 @default.
- W4287686077 hasConcept C203776342 @default.
- W4287686077 hasConcept C33676613 @default.
- W4287686077 hasConcept C33923547 @default.
- W4287686077 hasConcept C54540088 @default.
- W4287686077 hasConcept C64543145 @default.
- W4287686077 hasConcept C80899671 @default.
- W4287686077 hasConceptScore W4287686077C114614502 @default.
- W4287686077 hasConceptScore W4287686077C118615104 @default.
- W4287686077 hasConceptScore W4287686077C127413603 @default.
- W4287686077 hasConceptScore W4287686077C127634017 @default.
- W4287686077 hasConceptScore W4287686077C132525143 @default.
- W4287686077 hasConceptScore W4287686077C146867743 @default.
- W4287686077 hasConceptScore W4287686077C146978453 @default.
- W4287686077 hasConceptScore W4287686077C187929450 @default.
- W4287686077 hasConceptScore W4287686077C203776342 @default.
- W4287686077 hasConceptScore W4287686077C33676613 @default.
- W4287686077 hasConceptScore W4287686077C33923547 @default.
- W4287686077 hasConceptScore W4287686077C54540088 @default.
- W4287686077 hasConceptScore W4287686077C64543145 @default.
- W4287686077 hasConceptScore W4287686077C80899671 @default.
- W4287686077 hasLocation W42876860771 @default.
- W4287686077 hasOpenAccess W4287686077 @default.
- W4287686077 hasPrimaryLocation W42876860771 @default.
- W4287686077 hasRelatedWork W1531189955 @default.
- W4287686077 hasRelatedWork W1736115221 @default.
- W4287686077 hasRelatedWork W2003053180 @default.
- W4287686077 hasRelatedWork W2019306155 @default.
- W4287686077 hasRelatedWork W2052513475 @default.
- W4287686077 hasRelatedWork W2240372687 @default.
- W4287686077 hasRelatedWork W2472061671 @default.
- W4287686077 hasRelatedWork W2951869545 @default.
- W4287686077 hasRelatedWork W4287811667 @default.
- W4287686077 hasRelatedWork W4297080280 @default.
- W4287686077 isParatext "false" @default.
- W4287686077 isRetracted "false" @default.
- W4287686077 workType "article" @default.