Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287693744> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4287693744 abstract "A major problem in knot theory is to decide whether the Jones polynomial detects the unknot. In this paper we study a weaker related problem, namely whether the Jones polynomial reduced modulo an integer $n$ detects the unknot. The answer is known to be negative for $n=2^k$ with $kgeq 1$ and $n=3$. Here we show that if the answer is negative for some $n$, then it is negative for $n^k$ with any $kgeq 1$. In particular, for any $kgeq 1$, we construct nontrivial knots whose Jones polynomial is trivial modulo~$3^k$." @default.
- W4287693744 created "2022-07-26" @default.
- W4287693744 creator A5010146124 @default.
- W4287693744 date "2020-08-03" @default.
- W4287693744 modified "2023-09-24" @default.
- W4287693744 title "On the modular Jones polynomial" @default.
- W4287693744 doi "https://doi.org/10.48550/arxiv.2008.00716" @default.
- W4287693744 hasPublicationYear "2020" @default.
- W4287693744 type Work @default.
- W4287693744 citedByCount "0" @default.
- W4287693744 crossrefType "posted-content" @default.
- W4287693744 hasAuthorship W4287693744A5010146124 @default.
- W4287693744 hasBestOaLocation W42876937441 @default.
- W4287693744 hasConcept C114614502 @default.
- W4287693744 hasConcept C118615104 @default.
- W4287693744 hasConcept C127413603 @default.
- W4287693744 hasConcept C134306372 @default.
- W4287693744 hasConcept C199360897 @default.
- W4287693744 hasConcept C2779863119 @default.
- W4287693744 hasConcept C2780286412 @default.
- W4287693744 hasConcept C33923547 @default.
- W4287693744 hasConcept C41008148 @default.
- W4287693744 hasConcept C42360764 @default.
- W4287693744 hasConcept C54732982 @default.
- W4287693744 hasConcept C90119067 @default.
- W4287693744 hasConcept C97137487 @default.
- W4287693744 hasConceptScore W4287693744C114614502 @default.
- W4287693744 hasConceptScore W4287693744C118615104 @default.
- W4287693744 hasConceptScore W4287693744C127413603 @default.
- W4287693744 hasConceptScore W4287693744C134306372 @default.
- W4287693744 hasConceptScore W4287693744C199360897 @default.
- W4287693744 hasConceptScore W4287693744C2779863119 @default.
- W4287693744 hasConceptScore W4287693744C2780286412 @default.
- W4287693744 hasConceptScore W4287693744C33923547 @default.
- W4287693744 hasConceptScore W4287693744C41008148 @default.
- W4287693744 hasConceptScore W4287693744C42360764 @default.
- W4287693744 hasConceptScore W4287693744C54732982 @default.
- W4287693744 hasConceptScore W4287693744C90119067 @default.
- W4287693744 hasConceptScore W4287693744C97137487 @default.
- W4287693744 hasLocation W42876937441 @default.
- W4287693744 hasLocation W42876937442 @default.
- W4287693744 hasLocation W42876937443 @default.
- W4287693744 hasLocation W42876937444 @default.
- W4287693744 hasLocation W42876937445 @default.
- W4287693744 hasOpenAccess W4287693744 @default.
- W4287693744 hasPrimaryLocation W42876937441 @default.
- W4287693744 hasRelatedWork W13021155 @default.
- W4287693744 hasRelatedWork W19186682 @default.
- W4287693744 hasRelatedWork W19485423 @default.
- W4287693744 hasRelatedWork W21092593 @default.
- W4287693744 hasRelatedWork W41529869 @default.
- W4287693744 hasRelatedWork W47537937 @default.
- W4287693744 hasRelatedWork W51191576 @default.
- W4287693744 hasRelatedWork W53181715 @default.
- W4287693744 hasRelatedWork W7496576 @default.
- W4287693744 hasRelatedWork W7842301 @default.
- W4287693744 isParatext "false" @default.
- W4287693744 isRetracted "false" @default.
- W4287693744 workType "article" @default.