Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287706264> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4287706264 abstract "Volunteer computing uses Internet-connected devices (laptops, PCs, smart devices, etc.), in which their owners volunteer them as storage and computing power resources, has become an essential mechanism for resource management in numerous applications. The growth of the volume and variety of data traffic in the Internet leads to concerns on the robustness of cyberphysical systems especially for critical infrastructures. Therefore, the implementation of an efficient Intrusion Detection System for gathering such sensory data has gained vital importance. In this paper, we present a comparative study of Artificial Intelligence (AI)-driven intrusion detection systems for wirelessly connected sensors that track crucial applications. Specifically, we present an in-depth analysis of the use of machine learning, deep learning and reinforcement learning solutions to recognize intrusive behavior in the collected traffic. We evaluate the proposed mechanisms by using KD'99 as real attack data-set in our simulations. Results present the performance metrics for three different IDSs namely the Adaptively Supervised and Clustered Hybrid IDS (ASCH-IDS), Restricted Boltzmann Machine-based Clustered IDS (RBC-IDS) and Q-learning based IDS (QL-IDS) to detect malicious behaviors. We also present the performance of different reinforcement learning techniques such as State-Action-Reward-State-Action Learning (SARSA) and the Temporal Difference learning (TD). Through simulations, we show that QL-IDS performs with 100% detection rate while SARSA-IDS and TD-IDS perform at the order of 99.5%." @default.
- W4287706264 created "2022-07-26" @default.
- W4287706264 creator A5003131477 @default.
- W4287706264 creator A5055542851 @default.
- W4287706264 creator A5067986202 @default.
- W4287706264 date "2020-07-24" @default.
- W4287706264 modified "2023-09-27" @default.
- W4287706264 title "A Comparative Study of AI-based Intrusion Detection Techniques in Critical Infrastructures" @default.
- W4287706264 doi "https://doi.org/10.48550/arxiv.2008.00088" @default.
- W4287706264 hasPublicationYear "2020" @default.
- W4287706264 type Work @default.
- W4287706264 citedByCount "0" @default.
- W4287706264 crossrefType "posted-content" @default.
- W4287706264 hasAuthorship W4287706264A5003131477 @default.
- W4287706264 hasAuthorship W4287706264A5055542851 @default.
- W4287706264 hasAuthorship W4287706264A5067986202 @default.
- W4287706264 hasBestOaLocation W42877062641 @default.
- W4287706264 hasConcept C104317684 @default.
- W4287706264 hasConcept C108583219 @default.
- W4287706264 hasConcept C110875604 @default.
- W4287706264 hasConcept C119857082 @default.
- W4287706264 hasConcept C136764020 @default.
- W4287706264 hasConcept C154945302 @default.
- W4287706264 hasConcept C185592680 @default.
- W4287706264 hasConcept C35525427 @default.
- W4287706264 hasConcept C41008148 @default.
- W4287706264 hasConcept C55493867 @default.
- W4287706264 hasConcept C63479239 @default.
- W4287706264 hasConcept C97541855 @default.
- W4287706264 hasConceptScore W4287706264C104317684 @default.
- W4287706264 hasConceptScore W4287706264C108583219 @default.
- W4287706264 hasConceptScore W4287706264C110875604 @default.
- W4287706264 hasConceptScore W4287706264C119857082 @default.
- W4287706264 hasConceptScore W4287706264C136764020 @default.
- W4287706264 hasConceptScore W4287706264C154945302 @default.
- W4287706264 hasConceptScore W4287706264C185592680 @default.
- W4287706264 hasConceptScore W4287706264C35525427 @default.
- W4287706264 hasConceptScore W4287706264C41008148 @default.
- W4287706264 hasConceptScore W4287706264C55493867 @default.
- W4287706264 hasConceptScore W4287706264C63479239 @default.
- W4287706264 hasConceptScore W4287706264C97541855 @default.
- W4287706264 hasLocation W42877062641 @default.
- W4287706264 hasOpenAccess W4287706264 @default.
- W4287706264 hasPrimaryLocation W42877062641 @default.
- W4287706264 hasRelatedWork W2584408238 @default.
- W4287706264 hasRelatedWork W3044383684 @default.
- W4287706264 hasRelatedWork W4205568523 @default.
- W4287706264 hasRelatedWork W4223943233 @default.
- W4287706264 hasRelatedWork W4225161397 @default.
- W4287706264 hasRelatedWork W4285337355 @default.
- W4287706264 hasRelatedWork W4309045103 @default.
- W4287706264 hasRelatedWork W4309581904 @default.
- W4287706264 hasRelatedWork W4312200629 @default.
- W4287706264 hasRelatedWork W4360585206 @default.
- W4287706264 isParatext "false" @default.
- W4287706264 isRetracted "false" @default.
- W4287706264 workType "article" @default.