Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287777341> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4287777341 abstract "Numerous Bayesian Network (BN) structure learning algorithms have been proposed in the literature over the past few decades. Each publication makes an empirical or theoretical case for the algorithm proposed in that publication and results across studies are often inconsistent in their claims about which algorithm is 'best'. This is partly because there is no agreed evaluation approach to determine their effectiveness. Moreover, each algorithm is based on a set of assumptions, such as complete data and causal sufficiency, and tend to be evaluated with data that conforms to these assumptions, however unrealistic these assumptions may be in the real world. As a result, it is widely accepted that synthetic performance overestimates real performance, although to what degree this may happen remains unknown. This paper investigates the performance of 15 structure learning algorithms. We propose a methodology that applies the algorithms to data that incorporates synthetic noise, in an effort to better understand the performance of structure learning algorithms when applied to real data. Each algorithm is tested over multiple case studies, sample sizes, types of noise, and assessed with multiple evaluation criteria. This work involved approximately 10,000 graphs with a total structure learning runtime of seven months. It provides the first large-scale empirical validation of BN structure learning algorithms under different assumptions of data noise. The results suggest that traditional synthetic performance may overestimate real-world performance by anywhere between 10% and more than 50%. They also show that while score-based learning is generally superior to constraint-based learning, a higher fitting score does not necessarily imply a more accurate causal graph. To facilitate comparisons with future studies, we have made all data, raw results, graphs and BN models freely available online." @default.
- W4287777341 created "2022-07-26" @default.
- W4287777341 creator A5011685930 @default.
- W4287777341 creator A5015328755 @default.
- W4287777341 creator A5023363049 @default.
- W4287777341 creator A5042011218 @default.
- W4287777341 creator A5084184776 @default.
- W4287777341 date "2020-05-18" @default.
- W4287777341 modified "2023-09-27" @default.
- W4287777341 title "Large-scale empirical validation of Bayesian Network structure learning algorithms with noisy data" @default.
- W4287777341 doi "https://doi.org/10.48550/arxiv.2005.09020" @default.
- W4287777341 hasPublicationYear "2020" @default.
- W4287777341 type Work @default.
- W4287777341 citedByCount "0" @default.
- W4287777341 crossrefType "posted-content" @default.
- W4287777341 hasAuthorship W4287777341A5011685930 @default.
- W4287777341 hasAuthorship W4287777341A5015328755 @default.
- W4287777341 hasAuthorship W4287777341A5023363049 @default.
- W4287777341 hasAuthorship W4287777341A5042011218 @default.
- W4287777341 hasAuthorship W4287777341A5084184776 @default.
- W4287777341 hasBestOaLocation W42877773411 @default.
- W4287777341 hasConcept C107673813 @default.
- W4287777341 hasConcept C11413529 @default.
- W4287777341 hasConcept C115961682 @default.
- W4287777341 hasConcept C119857082 @default.
- W4287777341 hasConcept C121332964 @default.
- W4287777341 hasConcept C124101348 @default.
- W4287777341 hasConcept C154945302 @default.
- W4287777341 hasConcept C160920958 @default.
- W4287777341 hasConcept C177264268 @default.
- W4287777341 hasConcept C199360897 @default.
- W4287777341 hasConcept C2524010 @default.
- W4287777341 hasConcept C2776036281 @default.
- W4287777341 hasConcept C2778755073 @default.
- W4287777341 hasConcept C33724603 @default.
- W4287777341 hasConcept C33923547 @default.
- W4287777341 hasConcept C41008148 @default.
- W4287777341 hasConcept C58489278 @default.
- W4287777341 hasConcept C62520636 @default.
- W4287777341 hasConcept C99498987 @default.
- W4287777341 hasConceptScore W4287777341C107673813 @default.
- W4287777341 hasConceptScore W4287777341C11413529 @default.
- W4287777341 hasConceptScore W4287777341C115961682 @default.
- W4287777341 hasConceptScore W4287777341C119857082 @default.
- W4287777341 hasConceptScore W4287777341C121332964 @default.
- W4287777341 hasConceptScore W4287777341C124101348 @default.
- W4287777341 hasConceptScore W4287777341C154945302 @default.
- W4287777341 hasConceptScore W4287777341C160920958 @default.
- W4287777341 hasConceptScore W4287777341C177264268 @default.
- W4287777341 hasConceptScore W4287777341C199360897 @default.
- W4287777341 hasConceptScore W4287777341C2524010 @default.
- W4287777341 hasConceptScore W4287777341C2776036281 @default.
- W4287777341 hasConceptScore W4287777341C2778755073 @default.
- W4287777341 hasConceptScore W4287777341C33724603 @default.
- W4287777341 hasConceptScore W4287777341C33923547 @default.
- W4287777341 hasConceptScore W4287777341C41008148 @default.
- W4287777341 hasConceptScore W4287777341C58489278 @default.
- W4287777341 hasConceptScore W4287777341C62520636 @default.
- W4287777341 hasConceptScore W4287777341C99498987 @default.
- W4287777341 hasLocation W42877773411 @default.
- W4287777341 hasLocation W42877773412 @default.
- W4287777341 hasOpenAccess W4287777341 @default.
- W4287777341 hasPrimaryLocation W42877773411 @default.
- W4287777341 hasRelatedWork W10379114 @default.
- W4287777341 hasRelatedWork W12712126 @default.
- W4287777341 hasRelatedWork W13176313 @default.
- W4287777341 hasRelatedWork W13929034 @default.
- W4287777341 hasRelatedWork W2777878 @default.
- W4287777341 hasRelatedWork W4771408 @default.
- W4287777341 hasRelatedWork W5590877 @default.
- W4287777341 hasRelatedWork W6266756 @default.
- W4287777341 hasRelatedWork W665583 @default.
- W4287777341 hasRelatedWork W9177359 @default.
- W4287777341 isParatext "false" @default.
- W4287777341 isRetracted "false" @default.
- W4287777341 workType "article" @default.