Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287777494> ?p ?o ?g. }
Showing items 1 to 41 of
41
with 100 items per page.
- W4287777494 abstract "Fix primes $p$ and $ell$ with $ellneq p$. If $(A,lambda)$ is a $g$-dimensional principally polarized abelian variety, an $(ell)^g$-isogeny of $(A,lambda)$ has kernel a maximal isotropic subgroup of the $ell$-torsion of $A$; the image has a natural principal polarization. We define three isogeny graphs associated to such $(ell)^g$-isogenies -- the big isogeny graph $mathit{Gr}_{!g}(ell,p)$, the little isogeny graph $mathit{gr}_{!g}(ell,p)$, and the enhanced isogeny graph $widetilde{mathit{gr}}_{!g}(ell, p)$. We prove that all three isogeny graphs are connected. One ingredient of the proof is strong approximation for the quaternionic unitary group, which has previously been applied to moduli of abelian varieties in charateristic $p$ by Chai, Ekedahl/Oort, and Chai/Oort. The adjacency matrices of the three isogeny graphs are given in terms of the Brandt matrices defined by Hashimoto, Ibukiyama, Ihara, and Shimizu. We study some basic properties of these Brandt matrices and recast the theory using the notion of Brandt graphs. We show that the isogeny graphs $mathit{Gr}_{!g}(ell, p)$ and $mathit{gr}_{!g}(ell, p)$ are in fact our Brandt graphs. We give the $ell$-adic uniformization of $mathit{gr}_{!g}(ell,p)$ and $widetilde{mathit{gr}}_{!g}(ell,p)$. The $(ell+1)$-regular isogeny graph $mathit{Gr}_1(ell,p)$ for supersingular elliptic curves is well known to be Ramanujan. We calculate the Brandt matrices for a range of $g>1$, $ell$, and $p$. These calculations give four examples with $g>1$ where the regular graph $mathit{Gr}_{!g}(ell,p)$ has two vertices and is Ramanujan, and all other examples we computed with $g>1$ and two or more vertices were not Ramanujan. In particular, the $(ell)^g$-isogeny graph is not in general Ramanujan for $g>1$." @default.
- W4287777494 created "2022-07-26" @default.
- W4287777494 creator A5052435612 @default.
- W4287777494 creator A5065760722 @default.
- W4287777494 date "2020-05-18" @default.
- W4287777494 modified "2023-09-27" @default.
- W4287777494 title "Isogeny graphs of superspecial abelian varieties and Brandt matrices" @default.
- W4287777494 doi "https://doi.org/10.48550/arxiv.2005.09031" @default.
- W4287777494 hasPublicationYear "2020" @default.
- W4287777494 type Work @default.
- W4287777494 citedByCount "0" @default.
- W4287777494 crossrefType "posted-content" @default.
- W4287777494 hasAuthorship W4287777494A5052435612 @default.
- W4287777494 hasAuthorship W4287777494A5065760722 @default.
- W4287777494 hasBestOaLocation W42877774941 @default.
- W4287777494 hasConcept C114614502 @default.
- W4287777494 hasConcept C118615104 @default.
- W4287777494 hasConcept C136170076 @default.
- W4287777494 hasConcept C2779765290 @default.
- W4287777494 hasConcept C33923547 @default.
- W4287777494 hasConceptScore W4287777494C114614502 @default.
- W4287777494 hasConceptScore W4287777494C118615104 @default.
- W4287777494 hasConceptScore W4287777494C136170076 @default.
- W4287777494 hasConceptScore W4287777494C2779765290 @default.
- W4287777494 hasConceptScore W4287777494C33923547 @default.
- W4287777494 hasLocation W42877774941 @default.
- W4287777494 hasOpenAccess W4287777494 @default.
- W4287777494 hasPrimaryLocation W42877774941 @default.
- W4287777494 hasRelatedWork W2008239144 @default.
- W4287777494 hasRelatedWork W2010968629 @default.
- W4287777494 hasRelatedWork W2097067884 @default.
- W4287777494 hasRelatedWork W2272549168 @default.
- W4287777494 hasRelatedWork W2962904571 @default.
- W4287777494 hasRelatedWork W2963909847 @default.
- W4287777494 hasRelatedWork W2964195599 @default.
- W4287777494 hasRelatedWork W3092546859 @default.
- W4287777494 hasRelatedWork W3137155317 @default.
- W4287777494 hasRelatedWork W43840477 @default.
- W4287777494 isParatext "false" @default.
- W4287777494 isRetracted "false" @default.
- W4287777494 workType "article" @default.