Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287827411> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4287827411 abstract "In this paper we consider the clustering coefficient and clustering function in a random graph model proposed by Krioukov et al.~in 2010. In this model, nodes are chosen randomly inside a disk in the hyperbolic plane and two nodes are connected if they are at most a certain hyperbolic distance from each other. It has been shown that this model has various properties associated with complex networks, e.g. power-law degree distribution, short distances and non-vanishing clustering coefficient. Here we show that the clustering coefficient tends in probability to a constant $gamma$ that we give explicitly as a closed form expression in terms of $alpha, nu$ and certain special functions. This improves earlier work by Gugelmann et al., who proved that the clustering coefficient remains bounded away from zero with high probability, but left open the issue of convergence to a limiting constant. Similarly, we are able to show that $c(k)$, the average clustering coefficient over all vertices of degree exactly $k$, tends in probability to a limit $gamma(k)$ which we give explicitly as a closed form expression in terms of $alpha, nu$ and certain special functions. We are able to extend this last result also to sequences $(k_n)_n$ where $k_n$ grows as a function of $n$. Our results show that $gamma(k)$ scales differently, as $k$ grows, for different ranges of $alpha$. More precisely, there exists constants $c_{alpha,nu}$ depending on $alpha$ and $nu$, such that as $k to infty$, $gamma(k) sim c_{alpha,nu} cdot k^{2 - 4alpha}$ if $frac{1}{2} < alpha < frac{3}{4}$, $gamma(k) sim c_{alpha,nu} cdot log(k) cdot k^{-1} $ if $alpha=frac{3}{4}$ and $gamma(k) sim c_{alpha,nu} cdot k^{-1}$ when $alpha > frac{3}{4}$. These results contradict a claim of Krioukov et al., which stated that the limiting values $gamma(k)$ should always scale with $k^{-1}$ as we let $k$ grow." @default.
- W4287827411 created "2022-07-26" @default.
- W4287827411 creator A5026047559 @default.
- W4287827411 creator A5026489964 @default.
- W4287827411 creator A5039446712 @default.
- W4287827411 creator A5050093240 @default.
- W4287827411 date "2020-03-11" @default.
- W4287827411 modified "2023-09-23" @default.
- W4287827411 title "Clustering in a hyperbolic model of complex networks" @default.
- W4287827411 doi "https://doi.org/10.48550/arxiv.2003.05525" @default.
- W4287827411 hasPublicationYear "2020" @default.
- W4287827411 type Work @default.
- W4287827411 citedByCount "0" @default.
- W4287827411 crossrefType "posted-content" @default.
- W4287827411 hasAuthorship W4287827411A5026047559 @default.
- W4287827411 hasAuthorship W4287827411A5026489964 @default.
- W4287827411 hasAuthorship W4287827411A5039446712 @default.
- W4287827411 hasAuthorship W4287827411A5050093240 @default.
- W4287827411 hasBestOaLocation W42878274111 @default.
- W4287827411 hasConcept C105795698 @default.
- W4287827411 hasConcept C114614502 @default.
- W4287827411 hasConcept C118615104 @default.
- W4287827411 hasConcept C121332964 @default.
- W4287827411 hasConcept C134306372 @default.
- W4287827411 hasConcept C138885662 @default.
- W4287827411 hasConcept C14036430 @default.
- W4287827411 hasConcept C179117685 @default.
- W4287827411 hasConcept C199360897 @default.
- W4287827411 hasConcept C22047676 @default.
- W4287827411 hasConcept C24890656 @default.
- W4287827411 hasConcept C2775997480 @default.
- W4287827411 hasConcept C2777027219 @default.
- W4287827411 hasConcept C2780813799 @default.
- W4287827411 hasConcept C33923547 @default.
- W4287827411 hasConcept C34388435 @default.
- W4287827411 hasConcept C41008148 @default.
- W4287827411 hasConcept C41895202 @default.
- W4287827411 hasConcept C73555534 @default.
- W4287827411 hasConcept C78458016 @default.
- W4287827411 hasConcept C86803240 @default.
- W4287827411 hasConceptScore W4287827411C105795698 @default.
- W4287827411 hasConceptScore W4287827411C114614502 @default.
- W4287827411 hasConceptScore W4287827411C118615104 @default.
- W4287827411 hasConceptScore W4287827411C121332964 @default.
- W4287827411 hasConceptScore W4287827411C134306372 @default.
- W4287827411 hasConceptScore W4287827411C138885662 @default.
- W4287827411 hasConceptScore W4287827411C14036430 @default.
- W4287827411 hasConceptScore W4287827411C179117685 @default.
- W4287827411 hasConceptScore W4287827411C199360897 @default.
- W4287827411 hasConceptScore W4287827411C22047676 @default.
- W4287827411 hasConceptScore W4287827411C24890656 @default.
- W4287827411 hasConceptScore W4287827411C2775997480 @default.
- W4287827411 hasConceptScore W4287827411C2777027219 @default.
- W4287827411 hasConceptScore W4287827411C2780813799 @default.
- W4287827411 hasConceptScore W4287827411C33923547 @default.
- W4287827411 hasConceptScore W4287827411C34388435 @default.
- W4287827411 hasConceptScore W4287827411C41008148 @default.
- W4287827411 hasConceptScore W4287827411C41895202 @default.
- W4287827411 hasConceptScore W4287827411C73555534 @default.
- W4287827411 hasConceptScore W4287827411C78458016 @default.
- W4287827411 hasConceptScore W4287827411C86803240 @default.
- W4287827411 hasLocation W42878274111 @default.
- W4287827411 hasLocation W42878274112 @default.
- W4287827411 hasLocation W42878274113 @default.
- W4287827411 hasLocation W42878274114 @default.
- W4287827411 hasOpenAccess W4287827411 @default.
- W4287827411 hasPrimaryLocation W42878274111 @default.
- W4287827411 hasRelatedWork W12021352 @default.
- W4287827411 hasRelatedWork W14372279 @default.
- W4287827411 hasRelatedWork W15408080 @default.
- W4287827411 hasRelatedWork W35654564 @default.
- W4287827411 hasRelatedWork W38142608 @default.
- W4287827411 hasRelatedWork W48441969 @default.
- W4287827411 hasRelatedWork W50723691 @default.
- W4287827411 hasRelatedWork W51143448 @default.
- W4287827411 hasRelatedWork W6335828 @default.
- W4287827411 hasRelatedWork W6849995 @default.
- W4287827411 isParatext "false" @default.
- W4287827411 isRetracted "false" @default.
- W4287827411 workType "article" @default.