Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287831415> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4287831415 abstract "3D Computerized Tomography (CT) is a gold stan-dard technique to assess bone microstructure in the context of bone diseases such as osteoporosis. However, when acquired in-vivo, bone images may suffer from a low spatial resolution and the presence of noise due to the limited tolerable radiation exposure. One way to overcome this issue consists in applying Super-Resolution (SR) techniques that aim at recovering high resolution images. Significant progress has been recently made thanks to deep learning SR methods trained on natural image datasets. To measure the reconstruction quality, Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM) are commonly used in the SR literature. In this paper, we give evidence of the limitation of these two criteria. Through extensive experiments performed from a dataset of mice tibias specifically collected and imaged for this study, we show that state of the art deep learning-based SR methods miss important details about the bone microstructure which is not reflected by the PSNR and SSIM values. This study opens the door to future promising lines of research including new SR methods regularized with respect to morphometric and tonological parameters of bone microstructures." @default.
- W4287831415 created "2022-07-26" @default.
- W4287831415 creator A5012038333 @default.
- W4287831415 creator A5020817426 @default.
- W4287831415 creator A5034647327 @default.
- W4287831415 creator A5075496055 @default.
- W4287831415 creator A5082996653 @default.
- W4287831415 date "2022-08-29" @default.
- W4287831415 modified "2023-09-30" @default.
- W4287831415 title "Why do State-of-the-art Super-Resolution Methods not work well for Bone Microstructure CT Imaging?" @default.
- W4287831415 cites W2096425957 @default.
- W4287831415 cites W2133665775 @default.
- W4287831415 cites W2503339013 @default.
- W4287831415 cites W2963470893 @default.
- W4287831415 cites W2964297772 @default.
- W4287831415 cites W2968337696 @default.
- W4287831415 cites W2997222478 @default.
- W4287831415 cites W3106295246 @default.
- W4287831415 cites W3207673409 @default.
- W4287831415 doi "https://doi.org/10.23919/eusipco55093.2022.9909945" @default.
- W4287831415 hasPublicationYear "2022" @default.
- W4287831415 type Work @default.
- W4287831415 citedByCount "0" @default.
- W4287831415 crossrefType "proceedings-article" @default.
- W4287831415 hasAuthorship W4287831415A5012038333 @default.
- W4287831415 hasAuthorship W4287831415A5020817426 @default.
- W4287831415 hasAuthorship W4287831415A5034647327 @default.
- W4287831415 hasAuthorship W4287831415A5075496055 @default.
- W4287831415 hasAuthorship W4287831415A5082996653 @default.
- W4287831415 hasBestOaLocation W42878314152 @default.
- W4287831415 hasConcept C103278499 @default.
- W4287831415 hasConcept C108583219 @default.
- W4287831415 hasConcept C115961682 @default.
- W4287831415 hasConcept C127313418 @default.
- W4287831415 hasConcept C136229726 @default.
- W4287831415 hasConcept C13944312 @default.
- W4287831415 hasConcept C142724271 @default.
- W4287831415 hasConcept C151730666 @default.
- W4287831415 hasConcept C153180895 @default.
- W4287831415 hasConcept C154945302 @default.
- W4287831415 hasConcept C205372480 @default.
- W4287831415 hasConcept C2776541429 @default.
- W4287831415 hasConcept C2779343474 @default.
- W4287831415 hasConcept C31972630 @default.
- W4287831415 hasConcept C41008148 @default.
- W4287831415 hasConcept C55020928 @default.
- W4287831415 hasConcept C71924100 @default.
- W4287831415 hasConcept C76155785 @default.
- W4287831415 hasConcept C99498987 @default.
- W4287831415 hasConceptScore W4287831415C103278499 @default.
- W4287831415 hasConceptScore W4287831415C108583219 @default.
- W4287831415 hasConceptScore W4287831415C115961682 @default.
- W4287831415 hasConceptScore W4287831415C127313418 @default.
- W4287831415 hasConceptScore W4287831415C136229726 @default.
- W4287831415 hasConceptScore W4287831415C13944312 @default.
- W4287831415 hasConceptScore W4287831415C142724271 @default.
- W4287831415 hasConceptScore W4287831415C151730666 @default.
- W4287831415 hasConceptScore W4287831415C153180895 @default.
- W4287831415 hasConceptScore W4287831415C154945302 @default.
- W4287831415 hasConceptScore W4287831415C205372480 @default.
- W4287831415 hasConceptScore W4287831415C2776541429 @default.
- W4287831415 hasConceptScore W4287831415C2779343474 @default.
- W4287831415 hasConceptScore W4287831415C31972630 @default.
- W4287831415 hasConceptScore W4287831415C41008148 @default.
- W4287831415 hasConceptScore W4287831415C55020928 @default.
- W4287831415 hasConceptScore W4287831415C71924100 @default.
- W4287831415 hasConceptScore W4287831415C76155785 @default.
- W4287831415 hasConceptScore W4287831415C99498987 @default.
- W4287831415 hasLocation W42878314151 @default.
- W4287831415 hasLocation W42878314152 @default.
- W4287831415 hasLocation W42878314153 @default.
- W4287831415 hasLocation W42878314154 @default.
- W4287831415 hasLocation W42878314155 @default.
- W4287831415 hasOpenAccess W4287831415 @default.
- W4287831415 hasPrimaryLocation W42878314151 @default.
- W4287831415 hasRelatedWork W1604511055 @default.
- W4287831415 hasRelatedWork W2026847083 @default.
- W4287831415 hasRelatedWork W2069526761 @default.
- W4287831415 hasRelatedWork W2147047527 @default.
- W4287831415 hasRelatedWork W2164918837 @default.
- W4287831415 hasRelatedWork W2280716820 @default.
- W4287831415 hasRelatedWork W2611645609 @default.
- W4287831415 hasRelatedWork W2738221750 @default.
- W4287831415 hasRelatedWork W3217021205 @default.
- W4287831415 hasRelatedWork W4200550458 @default.
- W4287831415 isParatext "false" @default.
- W4287831415 isRetracted "false" @default.
- W4287831415 workType "article" @default.