Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287838966> ?p ?o ?g. }
- W4287838966 endingPage "3540" @default.
- W4287838966 startingPage "3540" @default.
- W4287838966 abstract "LiDAR is an excellent source of elevation data used in many surveys. The spaceborne handle system, Global Ecosystem Dynamics Investigation (GEDI), provides ground elevation information with high accuracy except for areas with steep slopes. GEDI data have a lot of noise from atmospheric conditions, and therefore filtering procedures are mandatory to select the best dataset. The dataset presents uncertainties of different magnitudes, with values reaching more than 100 m of difference between the reference data and the GEDI data. The challenge is to find a criterion to determine a threshold to filter accurate GEDI samples. This research aims to identify the threshold based on the difference values between the reference data and the GEDI data to select the maximum number of samples with low RMSE values. Therefore, we used the Kolmogorov–Smirnov (KS) non-parametric test to define the best threshold based on a normal distribution. Our results demonstrated a lower RMSE value with a high number of samples when compared with the quality flag parameter threshold, even using sensitivity parameter thresholds. This method is useful for achieving the best possible accuracy from GEDI data worldwide." @default.
- W4287838966 created "2022-07-26" @default.
- W4287838966 creator A5008925624 @default.
- W4287838966 creator A5027501386 @default.
- W4287838966 creator A5056966645 @default.
- W4287838966 creator A5057329014 @default.
- W4287838966 creator A5065554109 @default.
- W4287838966 creator A5083036615 @default.
- W4287838966 date "2022-07-24" @default.
- W4287838966 modified "2023-10-16" @default.
- W4287838966 title "Estimating the Optimal Threshold for Accuracy Assessment of the Global Ecosystem Dynamics Investigation (GEDI) Data in a Gentle Relief Urban Area" @default.
- W4287838966 cites W1103385825 @default.
- W4287838966 cites W1580513099 @default.
- W4287838966 cites W1973749381 @default.
- W4287838966 cites W1977271893 @default.
- W4287838966 cites W1995869471 @default.
- W4287838966 cites W1998970860 @default.
- W4287838966 cites W2016018299 @default.
- W4287838966 cites W2016489947 @default.
- W4287838966 cites W2019249840 @default.
- W4287838966 cites W2020050503 @default.
- W4287838966 cites W2021211360 @default.
- W4287838966 cites W2061372619 @default.
- W4287838966 cites W2061828617 @default.
- W4287838966 cites W2085235746 @default.
- W4287838966 cites W2133881105 @default.
- W4287838966 cites W2150089019 @default.
- W4287838966 cites W2162261213 @default.
- W4287838966 cites W2170021787 @default.
- W4287838966 cites W2509638468 @default.
- W4287838966 cites W2621920382 @default.
- W4287838966 cites W2895428089 @default.
- W4287838966 cites W2913226741 @default.
- W4287838966 cites W3003509779 @default.
- W4287838966 cites W3009222172 @default.
- W4287838966 cites W3017254567 @default.
- W4287838966 cites W3018472963 @default.
- W4287838966 cites W3081235092 @default.
- W4287838966 cites W3094643344 @default.
- W4287838966 cites W3107624355 @default.
- W4287838966 cites W3108079531 @default.
- W4287838966 cites W3110628212 @default.
- W4287838966 cites W3110757659 @default.
- W4287838966 cites W3126177595 @default.
- W4287838966 cites W3128484937 @default.
- W4287838966 cites W3135207900 @default.
- W4287838966 cites W3142781735 @default.
- W4287838966 cites W3145957422 @default.
- W4287838966 cites W3146643168 @default.
- W4287838966 cites W3147631320 @default.
- W4287838966 cites W3151341134 @default.
- W4287838966 cites W3152563594 @default.
- W4287838966 cites W3154678363 @default.
- W4287838966 cites W3159756736 @default.
- W4287838966 cites W3162754774 @default.
- W4287838966 cites W3163222099 @default.
- W4287838966 cites W3164035773 @default.
- W4287838966 cites W3164467570 @default.
- W4287838966 cites W3165454187 @default.
- W4287838966 cites W3169785445 @default.
- W4287838966 cites W3177033561 @default.
- W4287838966 cites W3178577652 @default.
- W4287838966 cites W3198478239 @default.
- W4287838966 doi "https://doi.org/10.3390/rs14153540" @default.
- W4287838966 hasPublicationYear "2022" @default.
- W4287838966 type Work @default.
- W4287838966 citedByCount "1" @default.
- W4287838966 countsByYear W42878389662023 @default.
- W4287838966 crossrefType "journal-article" @default.
- W4287838966 hasAuthorship W4287838966A5008925624 @default.
- W4287838966 hasAuthorship W4287838966A5027501386 @default.
- W4287838966 hasAuthorship W4287838966A5056966645 @default.
- W4287838966 hasAuthorship W4287838966A5057329014 @default.
- W4287838966 hasAuthorship W4287838966A5065554109 @default.
- W4287838966 hasAuthorship W4287838966A5083036615 @default.
- W4287838966 hasBestOaLocation W42878389661 @default.
- W4287838966 hasConcept C105795698 @default.
- W4287838966 hasConcept C127413603 @default.
- W4287838966 hasConcept C21200559 @default.
- W4287838966 hasConcept C24326235 @default.
- W4287838966 hasConcept C2524010 @default.
- W4287838966 hasConcept C33923547 @default.
- W4287838966 hasConcept C37054046 @default.
- W4287838966 hasConcept C39432304 @default.
- W4287838966 hasConcept C41008148 @default.
- W4287838966 hasConcept C64413873 @default.
- W4287838966 hasConcept C71924100 @default.
- W4287838966 hasConcept C99454951 @default.
- W4287838966 hasConceptScore W4287838966C105795698 @default.
- W4287838966 hasConceptScore W4287838966C127413603 @default.
- W4287838966 hasConceptScore W4287838966C21200559 @default.
- W4287838966 hasConceptScore W4287838966C24326235 @default.
- W4287838966 hasConceptScore W4287838966C2524010 @default.
- W4287838966 hasConceptScore W4287838966C33923547 @default.
- W4287838966 hasConceptScore W4287838966C37054046 @default.
- W4287838966 hasConceptScore W4287838966C39432304 @default.
- W4287838966 hasConceptScore W4287838966C41008148 @default.
- W4287838966 hasConceptScore W4287838966C64413873 @default.