Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287844218> ?p ?o ?g. }
- W4287844218 endingPage "111651" @default.
- W4287844218 startingPage "111651" @default.
- W4287844218 abstract "Most intelligent fault diagnosis methods of rotating machinery generally consider that normal samples and fault samples as equally important for pattern recognition training. It ignores that the rotating machinery is in a normal state most of the time, and the collected normal samples are far more than the fault samples. Considering this situation, this paper proposes a two-stage intelligent fault diagnosis methodology for rotating machinery combing optimized support vector data description (SVDD) and optimized support vector machine (SVM). Specifically, SVDD is applied for fault detection, and SVM is applied for fault identification. The parameters of SVDD and SVM are optimized by the grasshopper optimization algorithm (GOA). Multiscale entropy (ME) is used for feature extraction, which is the input feature vector of SVDD and SVM. Under the framework of the proposed methodology, the strengths and weaknesses of 8 different entropy-based indicators in feature extraction are explored. The analysis results of three cases prove the availability and universality of the proposed methodology. According to the analysis results of three case analyses, the permutation entropy (PE)-based indicators are not promising for fault detection. Refined composite multiscale fuzzy entropy (RCMFE) is recommended for fault detection and fault identification to generalize the universality. Based on RCMFE, the fault detection accuracy in the three cases is more than 99%, and the fault identification accuracy is more than 94%. This methodology, therefore, provides a powerful tool for rotating machinery fault diagnosis, which is beneficial to practical application." @default.
- W4287844218 created "2022-07-26" @default.
- W4287844218 creator A5013023384 @default.
- W4287844218 creator A5025851882 @default.
- W4287844218 creator A5036120236 @default.
- W4287844218 creator A5087321682 @default.
- W4287844218 date "2022-08-01" @default.
- W4287844218 modified "2023-10-11" @default.
- W4287844218 title "A two-stage fault diagnosis methodology for rotating machinery combining optimized support vector data description and optimized support vector machine" @default.
- W4287844218 cites W1512161016 @default.
- W4287844218 cites W1889820893 @default.
- W4287844218 cites W1970784519 @default.
- W4287844218 cites W1975687401 @default.
- W4287844218 cites W1978670814 @default.
- W4287844218 cites W1989931667 @default.
- W4287844218 cites W2003205626 @default.
- W4287844218 cites W2017082658 @default.
- W4287844218 cites W2019505419 @default.
- W4287844218 cites W2041287404 @default.
- W4287844218 cites W2074189988 @default.
- W4287844218 cites W2078731979 @default.
- W4287844218 cites W2080722576 @default.
- W4287844218 cites W2093266575 @default.
- W4287844218 cites W2100294832 @default.
- W4287844218 cites W2273310283 @default.
- W4287844218 cites W2322045482 @default.
- W4287844218 cites W2473294140 @default.
- W4287844218 cites W2585392941 @default.
- W4287844218 cites W2654845290 @default.
- W4287844218 cites W2772109667 @default.
- W4287844218 cites W2791139105 @default.
- W4287844218 cites W2794590714 @default.
- W4287844218 cites W2796551435 @default.
- W4287844218 cites W2810292802 @default.
- W4287844218 cites W2895763863 @default.
- W4287844218 cites W2922497381 @default.
- W4287844218 cites W2964294029 @default.
- W4287844218 cites W2998506103 @default.
- W4287844218 cites W2998780022 @default.
- W4287844218 cites W3005493426 @default.
- W4287844218 cites W3011104345 @default.
- W4287844218 cites W3011187591 @default.
- W4287844218 cites W3011208721 @default.
- W4287844218 cites W3015801892 @default.
- W4287844218 cites W3028895766 @default.
- W4287844218 cites W3033174105 @default.
- W4287844218 cites W3043549151 @default.
- W4287844218 cites W3046618944 @default.
- W4287844218 cites W3092375958 @default.
- W4287844218 cites W3095738619 @default.
- W4287844218 cites W3109842401 @default.
- W4287844218 cites W3117055840 @default.
- W4287844218 cites W3117912519 @default.
- W4287844218 cites W3120462636 @default.
- W4287844218 cites W3126618193 @default.
- W4287844218 cites W3136846975 @default.
- W4287844218 cites W3139484821 @default.
- W4287844218 cites W3173322341 @default.
- W4287844218 cites W3181338450 @default.
- W4287844218 cites W4234182366 @default.
- W4287844218 doi "https://doi.org/10.1016/j.measurement.2022.111651" @default.
- W4287844218 hasPublicationYear "2022" @default.
- W4287844218 type Work @default.
- W4287844218 citedByCount "20" @default.
- W4287844218 countsByYear W42878442182022 @default.
- W4287844218 countsByYear W42878442182023 @default.
- W4287844218 crossrefType "journal-article" @default.
- W4287844218 hasAuthorship W4287844218A5013023384 @default.
- W4287844218 hasAuthorship W4287844218A5025851882 @default.
- W4287844218 hasAuthorship W4287844218A5036120236 @default.
- W4287844218 hasAuthorship W4287844218A5087321682 @default.
- W4287844218 hasConcept C106301342 @default.
- W4287844218 hasConcept C121332964 @default.
- W4287844218 hasConcept C12267149 @default.
- W4287844218 hasConcept C124101348 @default.
- W4287844218 hasConcept C127313418 @default.
- W4287844218 hasConcept C152745839 @default.
- W4287844218 hasConcept C153180895 @default.
- W4287844218 hasConcept C154945302 @default.
- W4287844218 hasConcept C165205528 @default.
- W4287844218 hasConcept C172707124 @default.
- W4287844218 hasConcept C175551986 @default.
- W4287844218 hasConcept C41008148 @default.
- W4287844218 hasConcept C52622490 @default.
- W4287844218 hasConcept C62520636 @default.
- W4287844218 hasConceptScore W4287844218C106301342 @default.
- W4287844218 hasConceptScore W4287844218C121332964 @default.
- W4287844218 hasConceptScore W4287844218C12267149 @default.
- W4287844218 hasConceptScore W4287844218C124101348 @default.
- W4287844218 hasConceptScore W4287844218C127313418 @default.
- W4287844218 hasConceptScore W4287844218C152745839 @default.
- W4287844218 hasConceptScore W4287844218C153180895 @default.
- W4287844218 hasConceptScore W4287844218C154945302 @default.
- W4287844218 hasConceptScore W4287844218C165205528 @default.
- W4287844218 hasConceptScore W4287844218C172707124 @default.
- W4287844218 hasConceptScore W4287844218C175551986 @default.
- W4287844218 hasConceptScore W4287844218C41008148 @default.
- W4287844218 hasConceptScore W4287844218C52622490 @default.