Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287881504> ?p ?o ?g. }
- W4287881504 endingPage "102590" @default.
- W4287881504 startingPage "102590" @default.
- W4287881504 abstract "The positive single-stranded nature of COVID-19 mRNA led to the low proof-reading efficacy for its genome authentication. Thus mutant covid-19 strains have been rapidly evolving. Besides Alpha, Beta, Gamma, Delta, and Omicron variants, currently, subvariants of omicron are circulating, including BA.4, BA.5, and BA.2.12.1. Therefore, the speedy development of a rapid, simple, and easier diagnosis method to deal with new mutant covid viral infection is critically important. Many diagnosis methods have been developed for COVID-19 detection such as RT-PCR and antibodies detection. However, the former is time-consuming, laborious, and expensive, and the latter relies on the production of antibodies making it not suitable for the early diagnosis of viral infection. Many lateral-flow methods are available but might not be suitable for detecting the mutants, Here we proved the concept for the speedy development of a simple, rapid, and cost-effective early at-home diagnosis method for mutant Covid-19 infection by combining a new aptamer. The idea is to use the current lateral flow Covid-19 diagnosis system available in the market or to use one existing antibody for the Lateral Flow Nitrocellulose filter. To prove the concept, the DNA aptamer specific to spike proteins (S-proteins) was conjugated to gold nanoparticles and served as a detection probe. An antibody that is specific to spike proteins overexpressed on COVID viral particles was used as a second probe immobilized to the nitrocellulose membrane. The aptamer conjugated nanoparticles were incubated with spike proteins for half an hour and tested for their ability to bind to antibodies anchored on the nitrocellulose membrane. The gold nanoparticles were visualized on the nitrocellulose membrane due to interaction between the antigen (S-protein) with both the aptamer and the antibody. Thus, the detection of viral antigen can be obtained within 2 h, with a cost of less than $5 for the diagnosis reagent. In the future, as long as the mutant of the newly emerged viral surface protein is reported, a peptide or protein corresponding to the mutation can be produced by peptide synthesis or gene cloning within several days. An RNA or DNA aptamer can be generated quickly via SELEX. A gold-labeled aptamer specific to spike proteins (S-proteins) will serve as a detection probe. Any available lateral-flow diagnosis kits with an immobilized antibody that has been available on the market, or simply an antibody that binds COVID-19 virus might be used as a second probe immobilized on the nitrocellulose. The diagnosis method can be carried out by patients at home if a clinical trial verifies the feasibility and specificity of this method." @default.
- W4287881504 created "2022-07-26" @default.
- W4287881504 creator A5006132263 @default.
- W4287881504 creator A5022176836 @default.
- W4287881504 creator A5049301997 @default.
- W4287881504 creator A5079026035 @default.
- W4287881504 creator A5079928625 @default.
- W4287881504 date "2022-09-01" @default.
- W4287881504 modified "2023-09-24" @default.
- W4287881504 title "Proof-of-concept for speedy development of rapid and simple at-home method for potential diagnosis of early COVID-19 mutant infections using nanogold and aptamer" @default.
- W4287881504 cites W2012505332 @default.
- W4287881504 cites W2074988418 @default.
- W4287881504 cites W2104525153 @default.
- W4287881504 cites W2154572268 @default.
- W4287881504 cites W2156769174 @default.
- W4287881504 cites W2164530723 @default.
- W4287881504 cites W2767364115 @default.
- W4287881504 cites W3008696669 @default.
- W4287881504 cites W3010604545 @default.
- W4287881504 cites W3014518605 @default.
- W4287881504 cites W3014524604 @default.
- W4287881504 cites W3016610966 @default.
- W4287881504 cites W3024289893 @default.
- W4287881504 cites W3025631553 @default.
- W4287881504 cites W3029765016 @default.
- W4287881504 cites W3033409819 @default.
- W4287881504 cites W3034680516 @default.
- W4287881504 cites W3035106098 @default.
- W4287881504 cites W3035176421 @default.
- W4287881504 cites W3036931072 @default.
- W4287881504 cites W3036931136 @default.
- W4287881504 cites W3038707046 @default.
- W4287881504 cites W3041319886 @default.
- W4287881504 cites W3042813589 @default.
- W4287881504 cites W3044452703 @default.
- W4287881504 cites W3044839843 @default.
- W4287881504 cites W3048683141 @default.
- W4287881504 cites W3083825768 @default.
- W4287881504 cites W3087535724 @default.
- W4287881504 cites W3094528635 @default.
- W4287881504 cites W3095667267 @default.
- W4287881504 cites W3095920756 @default.
- W4287881504 cites W3096781091 @default.
- W4287881504 cites W3096972674 @default.
- W4287881504 cites W3103352259 @default.
- W4287881504 cites W3104395671 @default.
- W4287881504 cites W3110499570 @default.
- W4287881504 cites W3111310461 @default.
- W4287881504 cites W3113375705 @default.
- W4287881504 cites W3134272626 @default.
- W4287881504 cites W3135697461 @default.
- W4287881504 cites W3150956022 @default.
- W4287881504 cites W3157367531 @default.
- W4287881504 cites W3164570013 @default.
- W4287881504 cites W3185738448 @default.
- W4287881504 cites W3191595488 @default.
- W4287881504 cites W3195537517 @default.
- W4287881504 cites W4200283816 @default.
- W4287881504 cites W4229073163 @default.
- W4287881504 cites W4229440943 @default.
- W4287881504 cites W4229441510 @default.
- W4287881504 cites W4234562239 @default.
- W4287881504 cites W4280501700 @default.
- W4287881504 cites W4280580061 @default.
- W4287881504 cites W4281709648 @default.
- W4287881504 cites W4281754639 @default.
- W4287881504 cites W4281966770 @default.
- W4287881504 cites W4283026725 @default.
- W4287881504 cites W4283704819 @default.
- W4287881504 cites W4283831060 @default.
- W4287881504 doi "https://doi.org/10.1016/j.nano.2022.102590" @default.
- W4287881504 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35905841" @default.
- W4287881504 hasPublicationYear "2022" @default.
- W4287881504 type Work @default.
- W4287881504 citedByCount "2" @default.
- W4287881504 countsByYear W42878815042022 @default.
- W4287881504 countsByYear W42878815042023 @default.
- W4287881504 crossrefType "journal-article" @default.
- W4287881504 hasAuthorship W4287881504A5006132263 @default.
- W4287881504 hasAuthorship W4287881504A5022176836 @default.
- W4287881504 hasAuthorship W4287881504A5049301997 @default.
- W4287881504 hasAuthorship W4287881504A5079026035 @default.
- W4287881504 hasAuthorship W4287881504A5079928625 @default.
- W4287881504 hasBestOaLocation W42878815042 @default.
- W4287881504 hasConcept C104317684 @default.
- W4287881504 hasConcept C116675565 @default.
- W4287881504 hasConcept C128972844 @default.
- W4287881504 hasConcept C142724271 @default.
- W4287881504 hasConcept C143065580 @default.
- W4287881504 hasConcept C153911025 @default.
- W4287881504 hasConcept C159047783 @default.
- W4287881504 hasConcept C159654299 @default.
- W4287881504 hasConcept C185592680 @default.
- W4287881504 hasConcept C2778954975 @default.
- W4287881504 hasConcept C2779134260 @default.
- W4287881504 hasConcept C3006700255 @default.
- W4287881504 hasConcept C3007834351 @default.
- W4287881504 hasConcept C3008058167 @default.