Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287888918> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4287888918 endingPage "7849" @default.
- W4287888918 startingPage "7842" @default.
- W4287888918 abstract "The binary quadratic-residue codes and the punctured Reed-Muller codes <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>${mathcal {R}}_{2}((m-1)/2, m))$ </tex-math></inline-formula> are two families of binary cyclic codes with parameters <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$[n, (n+1)/2, d geq sqrt {n}]$ </tex-math></inline-formula> . These two families of binary cyclic codes are interesting partly due to the fact that their minimum distances have a square-root bound. The objective of this paper is to construct two families of binary cyclic codes of length <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$2^{m}-1$ </tex-math></inline-formula> and dimension near <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$2^{m-1}$ </tex-math></inline-formula> with good minimum distances. When <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$m geq 3$ </tex-math></inline-formula> is odd, the codes become a family of duadic codes with parameters <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$[2^{m}-1, 2^{m-1}, d]$ </tex-math></inline-formula> , where <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$d geq 2^{(m-1)/2}+1$ </tex-math></inline-formula> if <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$m equiv 3 pmod {4}$ </tex-math></inline-formula> and <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$d geq 2^{(m-1)/2}+3$ </tex-math></inline-formula> if <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$m equiv 1 pmod {4}$ </tex-math></inline-formula> . The two families of binary cyclic codes contain some optimal binary cyclic codes." @default.
- W4287888918 created "2022-07-26" @default.
- W4287888918 creator A5054829854 @default.
- W4287888918 creator A5074480584 @default.
- W4287888918 date "2022-12-01" @default.
- W4287888918 modified "2023-10-15" @default.
- W4287888918 title "Binary [<i>n</i>, (<i>n</i> + 1)/2] Cyclic Codes With Good Minimum Distances" @default.
- W4287888918 cites W1817803053 @default.
- W4287888918 cites W2061001255 @default.
- W4287888918 cites W2093465763 @default.
- W4287888918 cites W2110017198 @default.
- W4287888918 cites W2171341217 @default.
- W4287888918 cites W2295756207 @default.
- W4287888918 cites W2902895046 @default.
- W4287888918 cites W2912607362 @default.
- W4287888918 cites W2964110229 @default.
- W4287888918 cites W2964308721 @default.
- W4287888918 cites W3004315610 @default.
- W4287888918 cites W3127046705 @default.
- W4287888918 cites W4206775542 @default.
- W4287888918 cites W4255207765 @default.
- W4287888918 doi "https://doi.org/10.1109/tit.2022.3193715" @default.
- W4287888918 hasPublicationYear "2022" @default.
- W4287888918 type Work @default.
- W4287888918 citedByCount "3" @default.
- W4287888918 countsByYear W42878889182023 @default.
- W4287888918 crossrefType "journal-article" @default.
- W4287888918 hasAuthorship W4287888918A5054829854 @default.
- W4287888918 hasAuthorship W4287888918A5074480584 @default.
- W4287888918 hasConcept C114614502 @default.
- W4287888918 hasConcept C118615104 @default.
- W4287888918 hasConcept C2780990831 @default.
- W4287888918 hasConcept C33676613 @default.
- W4287888918 hasConcept C33923547 @default.
- W4287888918 hasConcept C45357846 @default.
- W4287888918 hasConcept C48372109 @default.
- W4287888918 hasConcept C94375191 @default.
- W4287888918 hasConceptScore W4287888918C114614502 @default.
- W4287888918 hasConceptScore W4287888918C118615104 @default.
- W4287888918 hasConceptScore W4287888918C2780990831 @default.
- W4287888918 hasConceptScore W4287888918C33676613 @default.
- W4287888918 hasConceptScore W4287888918C33923547 @default.
- W4287888918 hasConceptScore W4287888918C45357846 @default.
- W4287888918 hasConceptScore W4287888918C48372109 @default.
- W4287888918 hasConceptScore W4287888918C94375191 @default.
- W4287888918 hasFunder F4320321001 @default.
- W4287888918 hasFunder F4320321592 @default.
- W4287888918 hasFunder F4320324420 @default.
- W4287888918 hasIssue "12" @default.
- W4287888918 hasLocation W42878889181 @default.
- W4287888918 hasOpenAccess W4287888918 @default.
- W4287888918 hasPrimaryLocation W42878889181 @default.
- W4287888918 hasRelatedWork W149041114 @default.
- W4287888918 hasRelatedWork W1595229445 @default.
- W4287888918 hasRelatedWork W1965815883 @default.
- W4287888918 hasRelatedWork W2024638892 @default.
- W4287888918 hasRelatedWork W2963177394 @default.
- W4287888918 hasRelatedWork W2988146108 @default.
- W4287888918 hasRelatedWork W322408318 @default.
- W4287888918 hasRelatedWork W38661524 @default.
- W4287888918 hasRelatedWork W4313359513 @default.
- W4287888918 hasRelatedWork W763418848 @default.
- W4287888918 hasVolume "68" @default.
- W4287888918 isParatext "false" @default.
- W4287888918 isRetracted "false" @default.
- W4287888918 workType "article" @default.