Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287889354> ?p ?o ?g. }
- W4287889354 endingPage "16450" @default.
- W4287889354 startingPage "16440" @default.
- W4287889354 abstract "The induction motor is widely used for providing the running power of rotating machinery. Its fault diagnosis is significant to ensure the operation safety of rotary machinery. Infrared thermal image analysis based on deep learning has attracted the attention of many researchers due to its advantages in non-destructive and space locations. However, obtaining sufficient high-quality thermal image samples in practical applications is relatively difficult. Developing few-shot learning models is significant for extending the engineering application of thermal image analysis. The existing models of few-shot learning often neglect the spatial information extraction of images at the feature extraction module, which limits the performance of models. In this paper, a new prototypical network with coordinate attention (CAPNet) for fault diagnosis of three-phase induction motor is proposed. The coordination attention feature extraction module (CAFEM) is designed by the coordinate attention block and the convolution blocks to obtain the spatial relativities between feature maps. The designed CAFEM can inhibit harsh requirements on the amount of data, which greatly enhances the CAPNet’s ability to mine information. Moreover, the features exacted of fault are identified by the metric classifier. The performance of the CAPNet method is validated by experimental analysis of thermal images of a three-phase induction motor. The superiority of the proposed method is demonstrated in comparison with six other state-of-the-art algorithms in few-shot learning." @default.
- W4287889354 created "2022-07-26" @default.
- W4287889354 creator A5042022571 @default.
- W4287889354 creator A5065491808 @default.
- W4287889354 creator A5083442506 @default.
- W4287889354 date "2022-08-15" @default.
- W4287889354 modified "2023-10-01" @default.
- W4287889354 title "An Infrared Thermal Image Few-Shot Learning Method Based on CAPNet and Its Application to Induction Motor Fault Diagnosis" @default.
- W4287889354 cites W2560181314 @default.
- W4287889354 cites W2724573302 @default.
- W4287889354 cites W2746111230 @default.
- W4287889354 cites W2766129319 @default.
- W4287889354 cites W2768753204 @default.
- W4287889354 cites W2887782657 @default.
- W4287889354 cites W2893076595 @default.
- W4287889354 cites W2910029951 @default.
- W4287889354 cites W2921353139 @default.
- W4287889354 cites W2971524931 @default.
- W4287889354 cites W3025888249 @default.
- W4287889354 cites W3039216919 @default.
- W4287889354 cites W3041133507 @default.
- W4287889354 cites W3047598527 @default.
- W4287889354 cites W3048957103 @default.
- W4287889354 cites W3049546269 @default.
- W4287889354 cites W3090682168 @default.
- W4287889354 cites W3100567585 @default.
- W4287889354 cites W3113008830 @default.
- W4287889354 cites W3113220531 @default.
- W4287889354 cites W3129331061 @default.
- W4287889354 cites W3139302692 @default.
- W4287889354 cites W3177052299 @default.
- W4287889354 cites W3179759556 @default.
- W4287889354 cites W3190076951 @default.
- W4287889354 cites W3195802187 @default.
- W4287889354 cites W3199793489 @default.
- W4287889354 cites W3209204939 @default.
- W4287889354 cites W3209651137 @default.
- W4287889354 cites W3217286217 @default.
- W4287889354 doi "https://doi.org/10.1109/jsen.2022.3192300" @default.
- W4287889354 hasPublicationYear "2022" @default.
- W4287889354 type Work @default.
- W4287889354 citedByCount "11" @default.
- W4287889354 countsByYear W42878893542022 @default.
- W4287889354 countsByYear W42878893542023 @default.
- W4287889354 crossrefType "journal-article" @default.
- W4287889354 hasAuthorship W4287889354A5042022571 @default.
- W4287889354 hasAuthorship W4287889354A5065491808 @default.
- W4287889354 hasAuthorship W4287889354A5083442506 @default.
- W4287889354 hasConcept C119599485 @default.
- W4287889354 hasConcept C119857082 @default.
- W4287889354 hasConcept C127313418 @default.
- W4287889354 hasConcept C127413603 @default.
- W4287889354 hasConcept C152745839 @default.
- W4287889354 hasConcept C153180895 @default.
- W4287889354 hasConcept C154945302 @default.
- W4287889354 hasConcept C165205528 @default.
- W4287889354 hasConcept C165801399 @default.
- W4287889354 hasConcept C172707124 @default.
- W4287889354 hasConcept C175551986 @default.
- W4287889354 hasConcept C31972630 @default.
- W4287889354 hasConcept C41008148 @default.
- W4287889354 hasConcept C52622490 @default.
- W4287889354 hasConcept C80962145 @default.
- W4287889354 hasConcept C83665646 @default.
- W4287889354 hasConcept C95623464 @default.
- W4287889354 hasConceptScore W4287889354C119599485 @default.
- W4287889354 hasConceptScore W4287889354C119857082 @default.
- W4287889354 hasConceptScore W4287889354C127313418 @default.
- W4287889354 hasConceptScore W4287889354C127413603 @default.
- W4287889354 hasConceptScore W4287889354C152745839 @default.
- W4287889354 hasConceptScore W4287889354C153180895 @default.
- W4287889354 hasConceptScore W4287889354C154945302 @default.
- W4287889354 hasConceptScore W4287889354C165205528 @default.
- W4287889354 hasConceptScore W4287889354C165801399 @default.
- W4287889354 hasConceptScore W4287889354C172707124 @default.
- W4287889354 hasConceptScore W4287889354C175551986 @default.
- W4287889354 hasConceptScore W4287889354C31972630 @default.
- W4287889354 hasConceptScore W4287889354C41008148 @default.
- W4287889354 hasConceptScore W4287889354C52622490 @default.
- W4287889354 hasConceptScore W4287889354C80962145 @default.
- W4287889354 hasConceptScore W4287889354C83665646 @default.
- W4287889354 hasConceptScore W4287889354C95623464 @default.
- W4287889354 hasFunder F4320321001 @default.
- W4287889354 hasFunder F4320322163 @default.
- W4287889354 hasIssue "16" @default.
- W4287889354 hasLocation W42878893541 @default.
- W4287889354 hasOpenAccess W4287889354 @default.
- W4287889354 hasPrimaryLocation W42878893541 @default.
- W4287889354 hasRelatedWork W1977222486 @default.
- W4287889354 hasRelatedWork W2114586818 @default.
- W4287889354 hasRelatedWork W2143407407 @default.
- W4287889354 hasRelatedWork W2144059113 @default.
- W4287889354 hasRelatedWork W2146076056 @default.
- W4287889354 hasRelatedWork W2385132419 @default.
- W4287889354 hasRelatedWork W2547232919 @default.
- W4287889354 hasRelatedWork W2765332597 @default.
- W4287889354 hasRelatedWork W2772780115 @default.
- W4287889354 hasRelatedWork W2811390910 @default.