Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287904302> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W4287904302 abstract "We investigate the problem of Poincar'e duality for $L^p$ differential forms on bounded subanalytic submanifolds of $mathbb{R}^n$ (not necessarily compact). We show that, when $p$ is sufficiently close to $1$ then the $L^p$ cohomology of such a submanifold is isomorphic to its singular homology. In the case where $p$ is large, we show that $L^p$ cohomology is dual to intersection homology. As a consequence, we can deduce that the $L^p$ cohomology is Poincar'e dual to $L^q$ cohomology, if $p$ and $q$ are Holder conjugate to each other and $p$ is sufficiently large." @default.
- W4287904302 created "2022-07-26" @default.
- W4287904302 creator A5037431985 @default.
- W4287904302 date "2020-01-15" @default.
- W4287904302 modified "2023-10-16" @default.
- W4287904302 title "Poincar'e duality for $L^p$ cohomology on subanalytic singular spaces" @default.
- W4287904302 doi "https://doi.org/10.48550/arxiv.2001.05186" @default.
- W4287904302 hasPublicationYear "2020" @default.
- W4287904302 type Work @default.
- W4287904302 citedByCount "0" @default.
- W4287904302 crossrefType "posted-content" @default.
- W4287904302 hasAuthorship W4287904302A5037431985 @default.
- W4287904302 hasBestOaLocation W42879043021 @default.
- W4287904302 hasConcept C104317684 @default.
- W4287904302 hasConcept C115071613 @default.
- W4287904302 hasConcept C134306372 @default.
- W4287904302 hasConcept C151300846 @default.
- W4287904302 hasConcept C165525559 @default.
- W4287904302 hasConcept C185592680 @default.
- W4287904302 hasConcept C202444582 @default.
- W4287904302 hasConcept C26390989 @default.
- W4287904302 hasConcept C2778023678 @default.
- W4287904302 hasConcept C33923547 @default.
- W4287904302 hasConcept C34388435 @default.
- W4287904302 hasConcept C37253 @default.
- W4287904302 hasConcept C55493867 @default.
- W4287904302 hasConcept C63549537 @default.
- W4287904302 hasConcept C68365058 @default.
- W4287904302 hasConcept C72738302 @default.
- W4287904302 hasConcept C78606066 @default.
- W4287904302 hasConceptScore W4287904302C104317684 @default.
- W4287904302 hasConceptScore W4287904302C115071613 @default.
- W4287904302 hasConceptScore W4287904302C134306372 @default.
- W4287904302 hasConceptScore W4287904302C151300846 @default.
- W4287904302 hasConceptScore W4287904302C165525559 @default.
- W4287904302 hasConceptScore W4287904302C185592680 @default.
- W4287904302 hasConceptScore W4287904302C202444582 @default.
- W4287904302 hasConceptScore W4287904302C26390989 @default.
- W4287904302 hasConceptScore W4287904302C2778023678 @default.
- W4287904302 hasConceptScore W4287904302C33923547 @default.
- W4287904302 hasConceptScore W4287904302C34388435 @default.
- W4287904302 hasConceptScore W4287904302C37253 @default.
- W4287904302 hasConceptScore W4287904302C55493867 @default.
- W4287904302 hasConceptScore W4287904302C63549537 @default.
- W4287904302 hasConceptScore W4287904302C68365058 @default.
- W4287904302 hasConceptScore W4287904302C72738302 @default.
- W4287904302 hasConceptScore W4287904302C78606066 @default.
- W4287904302 hasLocation W42879043021 @default.
- W4287904302 hasLocation W42879043022 @default.
- W4287904302 hasOpenAccess W4287904302 @default.
- W4287904302 hasPrimaryLocation W42879043021 @default.
- W4287904302 hasRelatedWork W10669813 @default.
- W4287904302 hasRelatedWork W1132885 @default.
- W4287904302 hasRelatedWork W13361459 @default.
- W4287904302 hasRelatedWork W23319535 @default.
- W4287904302 hasRelatedWork W29729349 @default.
- W4287904302 hasRelatedWork W34832898 @default.
- W4287904302 hasRelatedWork W36864677 @default.
- W4287904302 hasRelatedWork W50520556 @default.
- W4287904302 hasRelatedWork W55395255 @default.
- W4287904302 hasRelatedWork W62907811 @default.
- W4287904302 isParatext "false" @default.
- W4287904302 isRetracted "false" @default.
- W4287904302 workType "article" @default.