Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287943712> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4287943712 abstract "We compute the small cohomology ring of the Cayley Grassmannian, that parametrizes four-dimensional subalgebras of the complexified octonions. We show that all the Gromov-Witten invariants in the multiplication table of the Schubert classes are non negative and deduce Golyshev's conjecture O holds true for this variety. We also check that the quantum cohomology is semisimple and that there exists, as predicted by Dubrovin's conjecture, an exceptional collection of maximal length in the derived category." @default.
- W4287943712 created "2022-07-26" @default.
- W4287943712 creator A5000780198 @default.
- W4287943712 creator A5017367646 @default.
- W4287943712 date "2019-07-17" @default.
- W4287943712 modified "2023-09-26" @default.
- W4287943712 title "The small quantum cohomology of the Cayley Grassmannian" @default.
- W4287943712 doi "https://doi.org/10.48550/arxiv.1907.07511" @default.
- W4287943712 hasPublicationYear "2019" @default.
- W4287943712 type Work @default.
- W4287943712 citedByCount "0" @default.
- W4287943712 crossrefType "posted-content" @default.
- W4287943712 hasAuthorship W4287943712A5000780198 @default.
- W4287943712 hasAuthorship W4287943712A5017367646 @default.
- W4287943712 hasBestOaLocation W42879437121 @default.
- W4287943712 hasConcept C105795698 @default.
- W4287943712 hasConcept C114614502 @default.
- W4287943712 hasConcept C121332964 @default.
- W4287943712 hasConcept C136119220 @default.
- W4287943712 hasConcept C136197465 @default.
- W4287943712 hasConcept C136660716 @default.
- W4287943712 hasConcept C162929932 @default.
- W4287943712 hasConcept C202444582 @default.
- W4287943712 hasConcept C2779185822 @default.
- W4287943712 hasConcept C2780595030 @default.
- W4287943712 hasConcept C2780990831 @default.
- W4287943712 hasConcept C33923547 @default.
- W4287943712 hasConcept C62520636 @default.
- W4287943712 hasConcept C72738302 @default.
- W4287943712 hasConcept C78606066 @default.
- W4287943712 hasConcept C84114770 @default.
- W4287943712 hasConceptScore W4287943712C105795698 @default.
- W4287943712 hasConceptScore W4287943712C114614502 @default.
- W4287943712 hasConceptScore W4287943712C121332964 @default.
- W4287943712 hasConceptScore W4287943712C136119220 @default.
- W4287943712 hasConceptScore W4287943712C136197465 @default.
- W4287943712 hasConceptScore W4287943712C136660716 @default.
- W4287943712 hasConceptScore W4287943712C162929932 @default.
- W4287943712 hasConceptScore W4287943712C202444582 @default.
- W4287943712 hasConceptScore W4287943712C2779185822 @default.
- W4287943712 hasConceptScore W4287943712C2780595030 @default.
- W4287943712 hasConceptScore W4287943712C2780990831 @default.
- W4287943712 hasConceptScore W4287943712C33923547 @default.
- W4287943712 hasConceptScore W4287943712C62520636 @default.
- W4287943712 hasConceptScore W4287943712C72738302 @default.
- W4287943712 hasConceptScore W4287943712C78606066 @default.
- W4287943712 hasConceptScore W4287943712C84114770 @default.
- W4287943712 hasLocation W42879437121 @default.
- W4287943712 hasLocation W42879437122 @default.
- W4287943712 hasLocation W42879437123 @default.
- W4287943712 hasOpenAccess W4287943712 @default.
- W4287943712 hasPrimaryLocation W42879437121 @default.
- W4287943712 hasRelatedWork W2106733598 @default.
- W4287943712 hasRelatedWork W226396297 @default.
- W4287943712 hasRelatedWork W2949133410 @default.
- W4287943712 hasRelatedWork W2950148772 @default.
- W4287943712 hasRelatedWork W2951963989 @default.
- W4287943712 hasRelatedWork W2963854314 @default.
- W4287943712 hasRelatedWork W2964028506 @default.
- W4287943712 hasRelatedWork W2994655632 @default.
- W4287943712 hasRelatedWork W4287943712 @default.
- W4287943712 hasRelatedWork W4300907312 @default.
- W4287943712 isParatext "false" @default.
- W4287943712 isRetracted "false" @default.
- W4287943712 workType "article" @default.