Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287958219> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4287958219 endingPage "309" @default.
- W4287958219 startingPage "286" @default.
- W4287958219 abstract "Purpose The current natural language processing algorithms are still lacking in judgment criteria, and these approaches often require deep knowledge of political or social contexts. Seeing the damage done by the spreading of fake news in various sectors have attracted the attention of several low-level regional communities. However, such methods are widely developed for English language and low-resource languages remain unfocused. This study aims to provide analysis of Hindi fake news and develop a referral system with advanced techniques to identify fake news in Hindi. Design/methodology/approach The technique deployed in this model uses bidirectional long short-term memory (B-LSTM) as compared with other models like naïve bayes, logistic regression, random forest, support vector machine, decision tree classifier, kth nearest neighbor, gated recurrent unit and long short-term models. Findings The deep learning model such as B-LSTM yields an accuracy of 95.01%. Originality/value This study anticipates that this model will be a beneficial resource for building technologies to prevent the spreading of fake news and contribute to research with low resource languages." @default.
- W4287958219 created "2022-07-26" @default.
- W4287958219 creator A5026888765 @default.
- W4287958219 creator A5042129919 @default.
- W4287958219 creator A5044318698 @default.
- W4287958219 creator A5044672544 @default.
- W4287958219 creator A5047686028 @default.
- W4287958219 creator A5077980208 @default.
- W4287958219 creator A5091589432 @default.
- W4287958219 date "2022-07-27" @default.
- W4287958219 modified "2023-09-27" @default.
- W4287958219 title "A deep neural network-based approach for fake news detection in regional language" @default.
- W4287958219 cites W2011666252 @default.
- W4287958219 cites W2236357521 @default.
- W4287958219 cites W2556605533 @default.
- W4287958219 cites W2897039802 @default.
- W4287958219 cites W2898471113 @default.
- W4287958219 cites W2922650329 @default.
- W4287958219 cites W2944575651 @default.
- W4287958219 cites W2974087526 @default.
- W4287958219 cites W2984711302 @default.
- W4287958219 cites W2988357083 @default.
- W4287958219 cites W3000204454 @default.
- W4287958219 cites W3004976430 @default.
- W4287958219 cites W3020963228 @default.
- W4287958219 cites W3022731820 @default.
- W4287958219 cites W3156648560 @default.
- W4287958219 cites W3203896450 @default.
- W4287958219 doi "https://doi.org/10.1108/ijwis-02-2022-0036" @default.
- W4287958219 hasPublicationYear "2022" @default.
- W4287958219 type Work @default.
- W4287958219 citedByCount "0" @default.
- W4287958219 crossrefType "journal-article" @default.
- W4287958219 hasAuthorship W4287958219A5026888765 @default.
- W4287958219 hasAuthorship W4287958219A5042129919 @default.
- W4287958219 hasAuthorship W4287958219A5044318698 @default.
- W4287958219 hasAuthorship W4287958219A5044672544 @default.
- W4287958219 hasAuthorship W4287958219A5047686028 @default.
- W4287958219 hasAuthorship W4287958219A5077980208 @default.
- W4287958219 hasAuthorship W4287958219A5091589432 @default.
- W4287958219 hasConcept C108583219 @default.
- W4287958219 hasConcept C111919701 @default.
- W4287958219 hasConcept C119857082 @default.
- W4287958219 hasConcept C12267149 @default.
- W4287958219 hasConcept C137293760 @default.
- W4287958219 hasConcept C154945302 @default.
- W4287958219 hasConcept C169258074 @default.
- W4287958219 hasConcept C204321447 @default.
- W4287958219 hasConcept C206345919 @default.
- W4287958219 hasConcept C31258907 @default.
- W4287958219 hasConcept C41008148 @default.
- W4287958219 hasConcept C50644808 @default.
- W4287958219 hasConcept C519982507 @default.
- W4287958219 hasConcept C519991488 @default.
- W4287958219 hasConcept C52001869 @default.
- W4287958219 hasConcept C84525736 @default.
- W4287958219 hasConcept C95623464 @default.
- W4287958219 hasConceptScore W4287958219C108583219 @default.
- W4287958219 hasConceptScore W4287958219C111919701 @default.
- W4287958219 hasConceptScore W4287958219C119857082 @default.
- W4287958219 hasConceptScore W4287958219C12267149 @default.
- W4287958219 hasConceptScore W4287958219C137293760 @default.
- W4287958219 hasConceptScore W4287958219C154945302 @default.
- W4287958219 hasConceptScore W4287958219C169258074 @default.
- W4287958219 hasConceptScore W4287958219C204321447 @default.
- W4287958219 hasConceptScore W4287958219C206345919 @default.
- W4287958219 hasConceptScore W4287958219C31258907 @default.
- W4287958219 hasConceptScore W4287958219C41008148 @default.
- W4287958219 hasConceptScore W4287958219C50644808 @default.
- W4287958219 hasConceptScore W4287958219C519982507 @default.
- W4287958219 hasConceptScore W4287958219C519991488 @default.
- W4287958219 hasConceptScore W4287958219C52001869 @default.
- W4287958219 hasConceptScore W4287958219C84525736 @default.
- W4287958219 hasConceptScore W4287958219C95623464 @default.
- W4287958219 hasIssue "5/6" @default.
- W4287958219 hasLocation W42879582191 @default.
- W4287958219 hasOpenAccess W4287958219 @default.
- W4287958219 hasPrimaryLocation W42879582191 @default.
- W4287958219 hasRelatedWork W3127425528 @default.
- W4287958219 hasRelatedWork W3143658565 @default.
- W4287958219 hasRelatedWork W3204641204 @default.
- W4287958219 hasRelatedWork W3211546796 @default.
- W4287958219 hasRelatedWork W4205958290 @default.
- W4287958219 hasRelatedWork W4283016678 @default.
- W4287958219 hasRelatedWork W4283784365 @default.
- W4287958219 hasRelatedWork W4285225238 @default.
- W4287958219 hasRelatedWork W4294067781 @default.
- W4287958219 hasRelatedWork W4311106074 @default.
- W4287958219 hasVolume "18" @default.
- W4287958219 isParatext "false" @default.
- W4287958219 isRetracted "false" @default.
- W4287958219 workType "article" @default.