Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287958287> ?p ?o ?g. }
- W4287958287 endingPage "2039" @default.
- W4287958287 startingPage "2021" @default.
- W4287958287 abstract "Dining out is one of the biggest expenditures for travelers worldwide and is essential for tourism-dependent destinations. Market segmentation gives industries the potential to classify similar customers and categorize their preferred target markets to ensure marketing expenses' operative management. It has been a practical approach for business improvement in tourism and hospitality. Big data are fundamentally changing the management of the hospitality sector and the relationship between the customer and business by simplifying the decision-making process based on large amounts of data. The data provided in social media have played an important role in customer segmentation. In fact, the data provided by the customers in social media have been a valuable source for decision-makers to precisely discover the customers' satisfaction dimensions on their services. Therefore, there is a need for the development of data-driven approaches for social data analysis for customers segmentation. This research aims to develop a new data-driven approach to reveal customers' satisfaction in restaurants. Specifically, k-means and Artificial Neural Network (ANN) with the aid of the Particle Swarm Optimization (PSO) technique are, respectively, used in data clustering and prediction tasks. In this research, the data of customers on the service quality of restaurants are collected from the TripAdvisor platform. The results of the data analysis are provided. We evaluate the prediction model through a set of evaluation metrics, Mean Squared Error (MSE) and coefficient of determination (R2), compared with the other prediction approaches. The results showed that k-means-PSO-ANN (MSE = 0.09847; R2 = 0.98764) has outperformed other methods. The current study demonstrates that the use of online review data for customer segmentation can be an effective way in the restaurant industry in relation to the traditional data analysis approaches." @default.
- W4287958287 created "2022-07-26" @default.
- W4287958287 creator A5063738316 @default.
- W4287958287 date "2022-07-26" @default.
- W4287958287 modified "2023-10-17" @default.
- W4287958287 title "A Hybrid Method for Customer Segmentation in Saudi Arabia Restaurants Using Clustering, Neural Networks and Optimization Learning Techniques" @default.
- W4287958287 cites W1815909728 @default.
- W4287958287 cites W1978885853 @default.
- W4287958287 cites W1996549107 @default.
- W4287958287 cites W2010541215 @default.
- W4287958287 cites W2012950438 @default.
- W4287958287 cites W2022756714 @default.
- W4287958287 cites W2027468933 @default.
- W4287958287 cites W2060298340 @default.
- W4287958287 cites W2072566632 @default.
- W4287958287 cites W2099073641 @default.
- W4287958287 cites W2120870732 @default.
- W4287958287 cites W2124228948 @default.
- W4287958287 cites W2128829993 @default.
- W4287958287 cites W2144106129 @default.
- W4287958287 cites W2147912544 @default.
- W4287958287 cites W2160550115 @default.
- W4287958287 cites W2284056046 @default.
- W4287958287 cites W2296306426 @default.
- W4287958287 cites W2301289564 @default.
- W4287958287 cites W2436036530 @default.
- W4287958287 cites W2470303929 @default.
- W4287958287 cites W2513453699 @default.
- W4287958287 cites W2520828129 @default.
- W4287958287 cites W2539161094 @default.
- W4287958287 cites W2549537750 @default.
- W4287958287 cites W2562231314 @default.
- W4287958287 cites W2602884746 @default.
- W4287958287 cites W2610917134 @default.
- W4287958287 cites W2734507185 @default.
- W4287958287 cites W2741936883 @default.
- W4287958287 cites W2756510502 @default.
- W4287958287 cites W2762944855 @default.
- W4287958287 cites W2772417972 @default.
- W4287958287 cites W2775095356 @default.
- W4287958287 cites W2792409675 @default.
- W4287958287 cites W2792859428 @default.
- W4287958287 cites W2793245108 @default.
- W4287958287 cites W2794775296 @default.
- W4287958287 cites W2802426274 @default.
- W4287958287 cites W2884143671 @default.
- W4287958287 cites W2888267224 @default.
- W4287958287 cites W2888709517 @default.
- W4287958287 cites W2891404605 @default.
- W4287958287 cites W2893616889 @default.
- W4287958287 cites W2906202975 @default.
- W4287958287 cites W2907605034 @default.
- W4287958287 cites W2923130341 @default.
- W4287958287 cites W2924243196 @default.
- W4287958287 cites W2944364847 @default.
- W4287958287 cites W2949287791 @default.
- W4287958287 cites W2951331445 @default.
- W4287958287 cites W2953975365 @default.
- W4287958287 cites W2958786037 @default.
- W4287958287 cites W2959857331 @default.
- W4287958287 cites W2963816815 @default.
- W4287958287 cites W2979956032 @default.
- W4287958287 cites W2982565920 @default.
- W4287958287 cites W2996991292 @default.
- W4287958287 cites W3005437975 @default.
- W4287958287 cites W3013498854 @default.
- W4287958287 cites W3014944758 @default.
- W4287958287 cites W3032887577 @default.
- W4287958287 cites W3069727413 @default.
- W4287958287 cites W3071727253 @default.
- W4287958287 cites W3088648611 @default.
- W4287958287 cites W3092289160 @default.
- W4287958287 cites W3112600384 @default.
- W4287958287 cites W3116172036 @default.
- W4287958287 cites W3128821069 @default.
- W4287958287 cites W3132291851 @default.
- W4287958287 cites W3138422654 @default.
- W4287958287 cites W3155397052 @default.
- W4287958287 cites W3155469659 @default.
- W4287958287 cites W3170986999 @default.
- W4287958287 cites W3171458132 @default.
- W4287958287 cites W3183906236 @default.
- W4287958287 cites W3189411510 @default.
- W4287958287 cites W3195419447 @default.
- W4287958287 cites W4226299522 @default.
- W4287958287 doi "https://doi.org/10.1007/s13369-022-07091-y" @default.
- W4287958287 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35910042" @default.
- W4287958287 hasPublicationYear "2022" @default.
- W4287958287 type Work @default.
- W4287958287 citedByCount "3" @default.
- W4287958287 countsByYear W42879582872023 @default.
- W4287958287 crossrefType "journal-article" @default.
- W4287958287 hasAuthorship W4287958287A5063738316 @default.
- W4287958287 hasBestOaLocation W42879582871 @default.
- W4287958287 hasConcept C107482638 @default.
- W4287958287 hasConcept C119857082 @default.
- W4287958287 hasConcept C124101348 @default.
- W4287958287 hasConcept C125308379 @default.