Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287958780> ?p ?o ?g. }
- W4287958780 endingPage "5840" @default.
- W4287958780 startingPage "5830" @default.
- W4287958780 abstract "Recently, deep learning-based methods have been established to denoise the low-count positron emission tomography (PET) images and predict their standard-count image counterparts, which could achieve reduction of injected dosage and scan time, and improve image quality for equivalent lesion detectability and clinical diagnosis. In clinical settings, the majority scans are still acquired using standard injection dose with standard scan time. In this work, we applied a 3D U-Net network to reduce the noise of standard-count PET images to obtain the virtual-high-count (VHC) PET images for identifying the potential benefits of the obtained VHC PET images.The training datasets, including down-sampled standard-count PET images as the network input and high-count images as the desired network output, were derived from 27 whole-body PET datasets, which were acquired using 90-min dynamic scan. The down-sampled standard-count PET images were rebinned with matched noise level of 195 clinical static PET datasets, by matching the normalized standard derivation (NSTD) inside 3D liver region of interests (ROIs). Cross-validation was performed on 27 PET datasets. Normalized mean square error (NMSE), peak signal to noise ratio (PSNR), structural similarity index (SSIM), and standard uptake value (SUV) bias of lesions were used for evaluation on standard-count and VHC PET images, with real-high-count PET image of 90 min as the gold standard. In addition, the network trained with 27 dynamic PET datasets was applied to 195 clinical static datasets to obtain VHC PET images. The NSTD and mean/max SUV of hypermetabolic lesions in standard-count and VHC PET images were evaluated. Three experienced nuclear medicine physicians evaluated the overall image quality of randomly selected 50 out of 195 patients' standard-count and VHC images and conducted 5-score ranking. A Wilcoxon signed-rank test was used to compare differences in the grading of standard-count and VHC images.The cross-validation results showed that VHC PET images had improved quantitative metrics scores than the standard-count PET images. The mean/max SUVs of 35 lesions in the standard-count and true-high-count PET images did not show significantly statistical difference. Similarly, the mean/max SUVs of VHC and true-high-count PET images did not show significantly statistical difference. For the 195 clinical data, the VHC PET images had a significantly lower NSTD than the standard-count images. The mean/max SUVs of 215 hypermetabolic lesions in the VHC and standard-count images showed no statistically significant difference. In the image quality evaluation by three experienced nuclear medicine physicians, standard-count images and VHC images received scores with mean and standard deviation of 3.34±0.80 and 4.26 ± 0.72 from Physician 1, 3.02 ± 0.87 and 3.96 ± 0.73 from Physician 2, and 3.74 ± 1.10 and 4.58 ± 0.57 from Physician 3, respectively. The VHC images were consistently ranked higher than the standard-count images. The Wilcoxon signed-rank test also indicated that the image quality evaluation between standard-count and VHC images had significant difference.A DL method was proposed to convert the standard-count images to the VHC images. The VHC images had reduced noise level. No significant difference in mean/max SUV to the standard-count images was observed. VHC images improved image quality for better lesion detectability and clinical diagnosis." @default.
- W4287958780 created "2022-07-26" @default.
- W4287958780 creator A5007071946 @default.
- W4287958780 creator A5022519168 @default.
- W4287958780 creator A5027638715 @default.
- W4287958780 creator A5051481992 @default.
- W4287958780 creator A5060437737 @default.
- W4287958780 creator A5070812231 @default.
- W4287958780 creator A5080125836 @default.
- W4287958780 creator A5080187091 @default.
- W4287958780 creator A5085748247 @default.
- W4287958780 date "2022-08-13" @default.
- W4287958780 modified "2023-09-27" @default.
- W4287958780 title "Virtual high‐count PET image generation using a deep learning method" @default.
- W4287958780 cites W1901129140 @default.
- W4287958780 cites W1964922465 @default.
- W4287958780 cites W1967560516 @default.
- W4287958780 cites W1972513278 @default.
- W4287958780 cites W1983845032 @default.
- W4287958780 cites W1992964064 @default.
- W4287958780 cites W1994003813 @default.
- W4287958780 cites W2002480337 @default.
- W4287958780 cites W2003884262 @default.
- W4287958780 cites W2031646752 @default.
- W4287958780 cites W2048089363 @default.
- W4287958780 cites W2084032129 @default.
- W4287958780 cites W2103559027 @default.
- W4287958780 cites W2110442226 @default.
- W4287958780 cites W2114514158 @default.
- W4287958780 cites W2116670064 @default.
- W4287958780 cites W2127890285 @default.
- W4287958780 cites W2162264757 @default.
- W4287958780 cites W2413430220 @default.
- W4287958780 cites W2729145866 @default.
- W4287958780 cites W2789588857 @default.
- W4287958780 cites W2904787157 @default.
- W4287958780 cites W2947716587 @default.
- W4287958780 cites W2957777391 @default.
- W4287958780 cites W2970280802 @default.
- W4287958780 cites W3041500444 @default.
- W4287958780 cites W3043997605 @default.
- W4287958780 cites W3048723059 @default.
- W4287958780 cites W3083061165 @default.
- W4287958780 cites W3084431922 @default.
- W4287958780 cites W3087009452 @default.
- W4287958780 cites W3089335504 @default.
- W4287958780 cites W3093565166 @default.
- W4287958780 cites W3110520628 @default.
- W4287958780 cites W3111633653 @default.
- W4287958780 cites W3119481803 @default.
- W4287958780 cites W3122629112 @default.
- W4287958780 cites W3126820293 @default.
- W4287958780 cites W3128822315 @default.
- W4287958780 cites W3133816304 @default.
- W4287958780 cites W3135424186 @default.
- W4287958780 cites W3136586316 @default.
- W4287958780 cites W3176558825 @default.
- W4287958780 cites W3201615129 @default.
- W4287958780 cites W3205522968 @default.
- W4287958780 cites W4244821078 @default.
- W4287958780 doi "https://doi.org/10.1002/mp.15867" @default.
- W4287958780 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35880541" @default.
- W4287958780 hasPublicationYear "2022" @default.
- W4287958780 type Work @default.
- W4287958780 citedByCount "2" @default.
- W4287958780 countsByYear W42879587802023 @default.
- W4287958780 crossrefType "journal-article" @default.
- W4287958780 hasAuthorship W4287958780A5007071946 @default.
- W4287958780 hasAuthorship W4287958780A5022519168 @default.
- W4287958780 hasAuthorship W4287958780A5027638715 @default.
- W4287958780 hasAuthorship W4287958780A5051481992 @default.
- W4287958780 hasAuthorship W4287958780A5060437737 @default.
- W4287958780 hasAuthorship W4287958780A5070812231 @default.
- W4287958780 hasAuthorship W4287958780A5080125836 @default.
- W4287958780 hasAuthorship W4287958780A5080187091 @default.
- W4287958780 hasAuthorship W4287958780A5085748247 @default.
- W4287958780 hasConcept C105795698 @default.
- W4287958780 hasConcept C115961682 @default.
- W4287958780 hasConcept C127077266 @default.
- W4287958780 hasConcept C153180895 @default.
- W4287958780 hasConcept C154945302 @default.
- W4287958780 hasConcept C2775842073 @default.
- W4287958780 hasConcept C2989005 @default.
- W4287958780 hasConcept C33923547 @default.
- W4287958780 hasConcept C40993552 @default.
- W4287958780 hasConcept C41008148 @default.
- W4287958780 hasConcept C55020928 @default.
- W4287958780 hasConcept C71924100 @default.
- W4287958780 hasConcept C99498987 @default.
- W4287958780 hasConceptScore W4287958780C105795698 @default.
- W4287958780 hasConceptScore W4287958780C115961682 @default.
- W4287958780 hasConceptScore W4287958780C127077266 @default.
- W4287958780 hasConceptScore W4287958780C153180895 @default.
- W4287958780 hasConceptScore W4287958780C154945302 @default.
- W4287958780 hasConceptScore W4287958780C2775842073 @default.
- W4287958780 hasConceptScore W4287958780C2989005 @default.
- W4287958780 hasConceptScore W4287958780C33923547 @default.
- W4287958780 hasConceptScore W4287958780C40993552 @default.