Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287964887> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4287964887 endingPage "288" @default.
- W4287964887 startingPage "279" @default.
- W4287964887 abstract "One of the major issues in engineering is the development of systems that make accurate predictions. The advances in machine learning and data science have given rise to intelligent data processing that is used for developing smart engineering systems. In this paper, a new method is developed that makes use of multiple learning kernels to analyze a dataset to a set of patterns, and then select a subset of them to put them together and make predictions. The proposed framework utilizes a set of kernel modeled Gaussian processes where each one is equipped with a different kernel function. The proposed method is applied for prediction making on a set of electric load patterns and provides high accuracy as compared to single Gaussian process models." @default.
- W4287964887 created "2022-07-26" @default.
- W4287964887 creator A5074118906 @default.
- W4287964887 date "2022-01-01" @default.
- W4287964887 modified "2023-09-25" @default.
- W4287964887 title "Multi-kernel Analysis Method for Intelligent Data Processing with Application to Prediction Making" @default.
- W4287964887 cites W177209644 @default.
- W4287964887 cites W2026253145 @default.
- W4287964887 cites W2127691422 @default.
- W4287964887 cites W2730398491 @default.
- W4287964887 cites W2768553691 @default.
- W4287964887 cites W2790764399 @default.
- W4287964887 cites W2804461409 @default.
- W4287964887 cites W2883297597 @default.
- W4287964887 cites W2891083097 @default.
- W4287964887 cites W2905318028 @default.
- W4287964887 cites W2924676286 @default.
- W4287964887 cites W2953854465 @default.
- W4287964887 cites W3011806813 @default.
- W4287964887 cites W3033835801 @default.
- W4287964887 cites W3111966892 @default.
- W4287964887 cites W3134594493 @default.
- W4287964887 cites W3157234965 @default.
- W4287964887 cites W3192379581 @default.
- W4287964887 cites W3217529127 @default.
- W4287964887 cites W4232160664 @default.
- W4287964887 cites W774145425 @default.
- W4287964887 doi "https://doi.org/10.1007/978-981-19-3444-5_25" @default.
- W4287964887 hasPublicationYear "2022" @default.
- W4287964887 type Work @default.
- W4287964887 citedByCount "0" @default.
- W4287964887 crossrefType "book-chapter" @default.
- W4287964887 hasAuthorship W4287964887A5074118906 @default.
- W4287964887 hasConcept C111919701 @default.
- W4287964887 hasConcept C114614502 @default.
- W4287964887 hasConcept C119857082 @default.
- W4287964887 hasConcept C121332964 @default.
- W4287964887 hasConcept C124101348 @default.
- W4287964887 hasConcept C14036430 @default.
- W4287964887 hasConcept C154945302 @default.
- W4287964887 hasConcept C163716315 @default.
- W4287964887 hasConcept C177264268 @default.
- W4287964887 hasConcept C199360897 @default.
- W4287964887 hasConcept C33923547 @default.
- W4287964887 hasConcept C41008148 @default.
- W4287964887 hasConcept C58489278 @default.
- W4287964887 hasConcept C61326573 @default.
- W4287964887 hasConcept C62520636 @default.
- W4287964887 hasConcept C7218915 @default.
- W4287964887 hasConcept C74193536 @default.
- W4287964887 hasConcept C78458016 @default.
- W4287964887 hasConcept C86803240 @default.
- W4287964887 hasConcept C98045186 @default.
- W4287964887 hasConceptScore W4287964887C111919701 @default.
- W4287964887 hasConceptScore W4287964887C114614502 @default.
- W4287964887 hasConceptScore W4287964887C119857082 @default.
- W4287964887 hasConceptScore W4287964887C121332964 @default.
- W4287964887 hasConceptScore W4287964887C124101348 @default.
- W4287964887 hasConceptScore W4287964887C14036430 @default.
- W4287964887 hasConceptScore W4287964887C154945302 @default.
- W4287964887 hasConceptScore W4287964887C163716315 @default.
- W4287964887 hasConceptScore W4287964887C177264268 @default.
- W4287964887 hasConceptScore W4287964887C199360897 @default.
- W4287964887 hasConceptScore W4287964887C33923547 @default.
- W4287964887 hasConceptScore W4287964887C41008148 @default.
- W4287964887 hasConceptScore W4287964887C58489278 @default.
- W4287964887 hasConceptScore W4287964887C61326573 @default.
- W4287964887 hasConceptScore W4287964887C62520636 @default.
- W4287964887 hasConceptScore W4287964887C7218915 @default.
- W4287964887 hasConceptScore W4287964887C74193536 @default.
- W4287964887 hasConceptScore W4287964887C78458016 @default.
- W4287964887 hasConceptScore W4287964887C86803240 @default.
- W4287964887 hasConceptScore W4287964887C98045186 @default.
- W4287964887 hasLocation W42879648871 @default.
- W4287964887 hasOpenAccess W4287964887 @default.
- W4287964887 hasPrimaryLocation W42879648871 @default.
- W4287964887 hasRelatedWork W145098650 @default.
- W4287964887 hasRelatedWork W2099577980 @default.
- W4287964887 hasRelatedWork W2142075636 @default.
- W4287964887 hasRelatedWork W2155899303 @default.
- W4287964887 hasRelatedWork W2170391517 @default.
- W4287964887 hasRelatedWork W2384408398 @default.
- W4287964887 hasRelatedWork W2415931830 @default.
- W4287964887 hasRelatedWork W4225083764 @default.
- W4287964887 hasRelatedWork W4321072186 @default.
- W4287964887 hasRelatedWork W2183680581 @default.
- W4287964887 isParatext "false" @default.
- W4287964887 isRetracted "false" @default.
- W4287964887 workType "book-chapter" @default.