Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287965151> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4287965151 endingPage "359" @default.
- W4287965151 startingPage "347" @default.
- W4287965151 abstract "The paper presents results from testing ten of the fastest background modelling algorithms applied for detecting moving objects in video. The algorithms are Fast Principal Component Pursuit (Fast PCP), Grassmann Average (GA), Grassmann Median (GM), Go Decomposition (GoDec), Greedy Semi-Soft Go Decomposition (GreGoDec), Low-Rank Matrix Completion by Riemannian Optimization (LRGeomCG), Robust Orthonormal Subspace Learning (ROSL), Non-Negative Matrix Factorization via Nesterovs Optimal Gradient Method (NeNMF), Deep Semi Non-negative Matrix Factorization (Deep-Semi-NMF) and Tucker Decomposition by Alternating Least Squares (Tucker-ALS). Two new algorithms employing score fusion from Fast PCP and ROSL, which yielded alone the highest Detection Rate, Precision and F-measure, are proposed. The first algorithm has higher Detection Rate from all the others and the second—the highest Precision. Both are considered applicable in various practical scenarios when seeking either higher reliability of object detection or higher precision of the covered area by each object." @default.
- W4287965151 created "2022-07-26" @default.
- W4287965151 creator A5037594551 @default.
- W4287965151 creator A5084732244 @default.
- W4287965151 date "2022-01-01" @default.
- W4287965151 modified "2023-09-28" @default.
- W4287965151 title "Moving Objects Detection in Video by Various Background Modelling Algorithms and Score Fusion" @default.
- W4287965151 cites W1969792798 @default.
- W4287965151 cites W1969977005 @default.
- W4287965151 cites W1987423623 @default.
- W4287965151 cites W2025603201 @default.
- W4287965151 cites W2058078260 @default.
- W4287965151 cites W2069634335 @default.
- W4287965151 cites W2076269884 @default.
- W4287965151 cites W2155151262 @default.
- W4287965151 cites W2211060793 @default.
- W4287965151 cites W2407895138 @default.
- W4287965151 cites W2419036319 @default.
- W4287965151 cites W2503308866 @default.
- W4287965151 cites W2511363568 @default.
- W4287965151 cites W2588179149 @default.
- W4287965151 cites W2793586828 @default.
- W4287965151 cites W2981380746 @default.
- W4287965151 cites W2994565612 @default.
- W4287965151 cites W3098655664 @default.
- W4287965151 cites W3137904869 @default.
- W4287965151 cites W3181678406 @default.
- W4287965151 cites W4235881750 @default.
- W4287965151 doi "https://doi.org/10.1007/978-981-19-3444-5_30" @default.
- W4287965151 hasPublicationYear "2022" @default.
- W4287965151 type Work @default.
- W4287965151 citedByCount "0" @default.
- W4287965151 crossrefType "book-chapter" @default.
- W4287965151 hasAuthorship W4287965151A5037594551 @default.
- W4287965151 hasAuthorship W4287965151A5084732244 @default.
- W4287965151 hasConcept C106487976 @default.
- W4287965151 hasConcept C11413529 @default.
- W4287965151 hasConcept C114614502 @default.
- W4287965151 hasConcept C121332964 @default.
- W4287965151 hasConcept C153180895 @default.
- W4287965151 hasConcept C154945302 @default.
- W4287965151 hasConcept C155281189 @default.
- W4287965151 hasConcept C158693339 @default.
- W4287965151 hasConcept C159985019 @default.
- W4287965151 hasConcept C164226766 @default.
- W4287965151 hasConcept C192562407 @default.
- W4287965151 hasConcept C202444582 @default.
- W4287965151 hasConcept C27438332 @default.
- W4287965151 hasConcept C2776151529 @default.
- W4287965151 hasConcept C2986737658 @default.
- W4287965151 hasConcept C32834561 @default.
- W4287965151 hasConcept C33923547 @default.
- W4287965151 hasConcept C41008148 @default.
- W4287965151 hasConcept C42355184 @default.
- W4287965151 hasConcept C42704193 @default.
- W4287965151 hasConcept C5806529 @default.
- W4287965151 hasConcept C62520636 @default.
- W4287965151 hasConceptScore W4287965151C106487976 @default.
- W4287965151 hasConceptScore W4287965151C11413529 @default.
- W4287965151 hasConceptScore W4287965151C114614502 @default.
- W4287965151 hasConceptScore W4287965151C121332964 @default.
- W4287965151 hasConceptScore W4287965151C153180895 @default.
- W4287965151 hasConceptScore W4287965151C154945302 @default.
- W4287965151 hasConceptScore W4287965151C155281189 @default.
- W4287965151 hasConceptScore W4287965151C158693339 @default.
- W4287965151 hasConceptScore W4287965151C159985019 @default.
- W4287965151 hasConceptScore W4287965151C164226766 @default.
- W4287965151 hasConceptScore W4287965151C192562407 @default.
- W4287965151 hasConceptScore W4287965151C202444582 @default.
- W4287965151 hasConceptScore W4287965151C27438332 @default.
- W4287965151 hasConceptScore W4287965151C2776151529 @default.
- W4287965151 hasConceptScore W4287965151C2986737658 @default.
- W4287965151 hasConceptScore W4287965151C32834561 @default.
- W4287965151 hasConceptScore W4287965151C33923547 @default.
- W4287965151 hasConceptScore W4287965151C41008148 @default.
- W4287965151 hasConceptScore W4287965151C42355184 @default.
- W4287965151 hasConceptScore W4287965151C42704193 @default.
- W4287965151 hasConceptScore W4287965151C5806529 @default.
- W4287965151 hasConceptScore W4287965151C62520636 @default.
- W4287965151 hasLocation W42879651511 @default.
- W4287965151 hasOpenAccess W4287965151 @default.
- W4287965151 hasPrimaryLocation W42879651511 @default.
- W4287965151 hasRelatedWork W2065962751 @default.
- W4287965151 hasRelatedWork W2085553065 @default.
- W4287965151 hasRelatedWork W2121787161 @default.
- W4287965151 hasRelatedWork W2157903613 @default.
- W4287965151 hasRelatedWork W2290340024 @default.
- W4287965151 hasRelatedWork W2379741605 @default.
- W4287965151 hasRelatedWork W2380927352 @default.
- W4287965151 hasRelatedWork W2543161807 @default.
- W4287965151 hasRelatedWork W2950761275 @default.
- W4287965151 hasRelatedWork W3178621026 @default.
- W4287965151 isParatext "false" @default.
- W4287965151 isRetracted "false" @default.
- W4287965151 workType "book-chapter" @default.