Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287978189> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4287978189 abstract "We study the asymptotic behaviour of the eigenvalue counting function for self-adjoint elliptic linear operators defined through classical weighted symbols of order $(1,1)$, on an asymptotically Euclidean manifold. We first prove a two term Weyl formula, improving previously known remainder estimates. Subsequently, we show that under a geometric assumption on the Hamiltonian flow at infinity there is a refined Weyl asymptotics with three terms. The proof of the theorem uses a careful analysis of the flow behaviour in the corner component of the boundary of the double compactification of the cotangent bundle. Finally, we illustrate the results by analysing the operator $Q=(1+|x|^2)(1-Delta)$ on $mathbb{R}^d$." @default.
- W4287978189 created "2022-07-26" @default.
- W4287978189 creator A5054074610 @default.
- W4287978189 creator A5067582646 @default.
- W4287978189 date "2019-12-31" @default.
- W4287978189 modified "2023-09-29" @default.
- W4287978189 title "Weyl Law on Asymptotically Euclidean Manifolds" @default.
- W4287978189 doi "https://doi.org/10.48550/arxiv.1912.13402" @default.
- W4287978189 hasPublicationYear "2019" @default.
- W4287978189 type Work @default.
- W4287978189 citedByCount "0" @default.
- W4287978189 crossrefType "posted-content" @default.
- W4287978189 hasAuthorship W4287978189A5054074610 @default.
- W4287978189 hasAuthorship W4287978189A5067582646 @default.
- W4287978189 hasBestOaLocation W42879781891 @default.
- W4287978189 hasConcept C121332964 @default.
- W4287978189 hasConcept C126255220 @default.
- W4287978189 hasConcept C129782007 @default.
- W4287978189 hasConcept C130787639 @default.
- W4287978189 hasConcept C134306372 @default.
- W4287978189 hasConcept C137134375 @default.
- W4287978189 hasConcept C158693339 @default.
- W4287978189 hasConcept C178009071 @default.
- W4287978189 hasConcept C202444582 @default.
- W4287978189 hasConcept C2524010 @default.
- W4287978189 hasConcept C33923547 @default.
- W4287978189 hasConcept C39613435 @default.
- W4287978189 hasConcept C62520636 @default.
- W4287978189 hasConcept C7979169 @default.
- W4287978189 hasConcept C94375191 @default.
- W4287978189 hasConceptScore W4287978189C121332964 @default.
- W4287978189 hasConceptScore W4287978189C126255220 @default.
- W4287978189 hasConceptScore W4287978189C129782007 @default.
- W4287978189 hasConceptScore W4287978189C130787639 @default.
- W4287978189 hasConceptScore W4287978189C134306372 @default.
- W4287978189 hasConceptScore W4287978189C137134375 @default.
- W4287978189 hasConceptScore W4287978189C158693339 @default.
- W4287978189 hasConceptScore W4287978189C178009071 @default.
- W4287978189 hasConceptScore W4287978189C202444582 @default.
- W4287978189 hasConceptScore W4287978189C2524010 @default.
- W4287978189 hasConceptScore W4287978189C33923547 @default.
- W4287978189 hasConceptScore W4287978189C39613435 @default.
- W4287978189 hasConceptScore W4287978189C62520636 @default.
- W4287978189 hasConceptScore W4287978189C7979169 @default.
- W4287978189 hasConceptScore W4287978189C94375191 @default.
- W4287978189 hasLocation W42879781891 @default.
- W4287978189 hasLocation W42879781892 @default.
- W4287978189 hasOpenAccess W4287978189 @default.
- W4287978189 hasPrimaryLocation W42879781891 @default.
- W4287978189 hasRelatedWork W17233160 @default.
- W4287978189 hasRelatedWork W19973034 @default.
- W4287978189 hasRelatedWork W23299068 @default.
- W4287978189 hasRelatedWork W26365927 @default.
- W4287978189 hasRelatedWork W28073343 @default.
- W4287978189 hasRelatedWork W3480256 @default.
- W4287978189 hasRelatedWork W36229653 @default.
- W4287978189 hasRelatedWork W39472482 @default.
- W4287978189 hasRelatedWork W41821708 @default.
- W4287978189 hasRelatedWork W55956262 @default.
- W4287978189 isParatext "false" @default.
- W4287978189 isRetracted "false" @default.
- W4287978189 workType "article" @default.