Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287979098> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4287979098 abstract "Solving the equation $P_a(X):=X^{q+1}+X+a=0$ over finite field $GF{Q}$, where $Q=p^n, q=p^k$ and $p$ is a prime, arises in many different contexts including finite geometry, the inverse Galois problem cite{ACZ2000}, the construction of difference sets with Singer parameters cite{DD2004}, determining cross-correlation between $m$-sequences cite{DOBBERTIN2006,HELLESETH2008} and to construct error-correcting codes cite{Bracken2009}, as well as to speed up the index calculus method for computing discrete logarithms on finite fields cite{GGGZ2013,GGGZ2013+} and on algebraic curves cite{M2014}. Subsequently, in cite{Bluher2004,HK2008,HK2010,BTT2014,Bluher2016,KM2019,CMPZ2019,MS2019}, the $GF{Q}$-zeros of $P_a(X)$ have been studied: in cite{Bluher2004} it was shown that the possible values of the number of the zeros that $P_a(X)$ has in $GF{Q}$ is $0$, $1$, $2$ or $p^{gcd(n, k)}+1$. Some criteria for the number of the $GF{Q}$-zeros of $P_a(x)$ were found in cite{HK2008,HK2010,BTT2014,KM2019,MS2019}. However, while the ultimate goal is to identify all the $GF{Q}$-zeros, even in the case $p=2$, it was solved only under the condition $gcd(n, k)=1$ cite{KM2019}. We discuss this equation without any restriction on $p$ and $gcd(n,k)$. New criteria for the number of the $GF{Q}$-zeros of $P_a(x)$ are proved. For the cases of one or two $GF{Q}$-zeros, we provide explicit expressions for these rational zeros in terms of $a$. For the case of $p^{gcd(n, k)}+1$ rational zeros, we provide a parametrization of such $a$'s and express the $p^{gcd(n, k)}+1$ rational zeros by using that parametrization." @default.
- W4287979098 created "2022-07-26" @default.
- W4287979098 creator A5034752358 @default.
- W4287979098 creator A5053282863 @default.
- W4287979098 creator A5081034401 @default.
- W4287979098 date "2019-12-29" @default.
- W4287979098 modified "2023-10-16" @default.
- W4287979098 title "Solving $X^{q+1}+X+a=0$ over Finite Fields" @default.
- W4287979098 doi "https://doi.org/10.48550/arxiv.1912.12648" @default.
- W4287979098 hasPublicationYear "2019" @default.
- W4287979098 type Work @default.
- W4287979098 citedByCount "0" @default.
- W4287979098 crossrefType "posted-content" @default.
- W4287979098 hasAuthorship W4287979098A5034752358 @default.
- W4287979098 hasAuthorship W4287979098A5053282863 @default.
- W4287979098 hasAuthorship W4287979098A5081034401 @default.
- W4287979098 hasBestOaLocation W42879790981 @default.
- W4287979098 hasConcept C113429393 @default.
- W4287979098 hasConcept C114614502 @default.
- W4287979098 hasConcept C118615104 @default.
- W4287979098 hasConcept C12657307 @default.
- W4287979098 hasConcept C134306372 @default.
- W4287979098 hasConcept C184992742 @default.
- W4287979098 hasConcept C202444582 @default.
- W4287979098 hasConcept C207467116 @default.
- W4287979098 hasConcept C2524010 @default.
- W4287979098 hasConcept C33923547 @default.
- W4287979098 hasConcept C77926391 @default.
- W4287979098 hasConcept C9376300 @default.
- W4287979098 hasConcept C94398972 @default.
- W4287979098 hasConcept C9652623 @default.
- W4287979098 hasConceptScore W4287979098C113429393 @default.
- W4287979098 hasConceptScore W4287979098C114614502 @default.
- W4287979098 hasConceptScore W4287979098C118615104 @default.
- W4287979098 hasConceptScore W4287979098C12657307 @default.
- W4287979098 hasConceptScore W4287979098C134306372 @default.
- W4287979098 hasConceptScore W4287979098C184992742 @default.
- W4287979098 hasConceptScore W4287979098C202444582 @default.
- W4287979098 hasConceptScore W4287979098C207467116 @default.
- W4287979098 hasConceptScore W4287979098C2524010 @default.
- W4287979098 hasConceptScore W4287979098C33923547 @default.
- W4287979098 hasConceptScore W4287979098C77926391 @default.
- W4287979098 hasConceptScore W4287979098C9376300 @default.
- W4287979098 hasConceptScore W4287979098C94398972 @default.
- W4287979098 hasConceptScore W4287979098C9652623 @default.
- W4287979098 hasLocation W42879790981 @default.
- W4287979098 hasOpenAccess W4287979098 @default.
- W4287979098 hasPrimaryLocation W42879790981 @default.
- W4287979098 hasRelatedWork W1990918982 @default.
- W4287979098 hasRelatedWork W2086709251 @default.
- W4287979098 hasRelatedWork W2130884067 @default.
- W4287979098 hasRelatedWork W2166784802 @default.
- W4287979098 hasRelatedWork W2964080809 @default.
- W4287979098 hasRelatedWork W3100417154 @default.
- W4287979098 hasRelatedWork W3201541924 @default.
- W4287979098 hasRelatedWork W4287979098 @default.
- W4287979098 hasRelatedWork W4313592526 @default.
- W4287979098 hasRelatedWork W4323030206 @default.
- W4287979098 isParatext "false" @default.
- W4287979098 isRetracted "false" @default.
- W4287979098 workType "article" @default.