Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287982092> ?p ?o ?g. }
- W4287982092 endingPage "1073" @default.
- W4287982092 startingPage "1064" @default.
- W4287982092 abstract "Agriculture and farming as a backbone of many developing countries provides food safety and security. Arecanut being a major plantation in India, take part an important role in the life of the farmers. Arecanut growth monitoring and harvesting needs skilled labors and it is very risky since the arecanut trees are very thin and tall. A vision-based system for agriculture and farming gains popularity in the recent years. Segmentation is a fundamental task in any vision-based system. A very few attempts been made for the segmentation of arecanut bunch and are based on hand-crafted features with limited performance. The aim of our research is to propose and develop an efficient and accurate technique for the segmentation of arecanut bunches by eliminating unwanted background information. This paper presents two deep-learning approaches: Mask Region-Based Convolutional Neural Network (Mask R-CNN) and U-Net for the segmentation of arecanut bunches from the tree images without any pre-processing. Experiments were done to estimate and evaluate the performances of both the methods and shows that Mask R-CNN performs better compared to U-Net and methods that apply segmentation on other commodities as there were no bench marks for the arecanut." @default.
- W4287982092 created "2022-07-26" @default.
- W4287982092 creator A5022183995 @default.
- W4287982092 creator A5023287946 @default.
- W4287982092 creator A5025774892 @default.
- W4287982092 creator A5042224284 @default.
- W4287982092 creator A5050240781 @default.
- W4287982092 creator A5065639252 @default.
- W4287982092 date "2022-07-26" @default.
- W4287982092 modified "2023-09-27" @default.
- W4287982092 title "Arecanut Bunch Segmentation Using Deep Learning Techniques" @default.
- W4287982092 cites W1529382637 @default.
- W4287982092 cites W1861492603 @default.
- W4287982092 cites W1901129140 @default.
- W4287982092 cites W1972373926 @default.
- W4287982092 cites W1980180011 @default.
- W4287982092 cites W2028045291 @default.
- W4287982092 cites W2041221361 @default.
- W4287982092 cites W2071469153 @default.
- W4287982092 cites W2073006048 @default.
- W4287982092 cites W2076629277 @default.
- W4287982092 cites W2094025749 @default.
- W4287982092 cites W2134974756 @default.
- W4287982092 cites W2162532139 @default.
- W4287982092 cites W2182749117 @default.
- W4287982092 cites W2241043061 @default.
- W4287982092 cites W2394911398 @default.
- W4287982092 cites W2475488897 @default.
- W4287982092 cites W2535625773 @default.
- W4287982092 cites W2543665758 @default.
- W4287982092 cites W2565639579 @default.
- W4287982092 cites W2566174476 @default.
- W4287982092 cites W2594584504 @default.
- W4287982092 cites W2613475455 @default.
- W4287982092 cites W2618530766 @default.
- W4287982092 cites W2625680238 @default.
- W4287982092 cites W2803055907 @default.
- W4287982092 cites W2807964252 @default.
- W4287982092 cites W2809512934 @default.
- W4287982092 cites W2890040529 @default.
- W4287982092 cites W2896971046 @default.
- W4287982092 cites W2911187395 @default.
- W4287982092 cites W4252165888 @default.
- W4287982092 doi "https://doi.org/10.46300/9106.2022.16.129" @default.
- W4287982092 hasPublicationYear "2022" @default.
- W4287982092 type Work @default.
- W4287982092 citedByCount "1" @default.
- W4287982092 countsByYear W42879820922023 @default.
- W4287982092 crossrefType "journal-article" @default.
- W4287982092 hasAuthorship W4287982092A5022183995 @default.
- W4287982092 hasAuthorship W4287982092A5023287946 @default.
- W4287982092 hasAuthorship W4287982092A5025774892 @default.
- W4287982092 hasAuthorship W4287982092A5042224284 @default.
- W4287982092 hasAuthorship W4287982092A5050240781 @default.
- W4287982092 hasAuthorship W4287982092A5065639252 @default.
- W4287982092 hasBestOaLocation W42879820921 @default.
- W4287982092 hasConcept C108583219 @default.
- W4287982092 hasConcept C113174947 @default.
- W4287982092 hasConcept C118518473 @default.
- W4287982092 hasConcept C119857082 @default.
- W4287982092 hasConcept C127413603 @default.
- W4287982092 hasConcept C134306372 @default.
- W4287982092 hasConcept C154945302 @default.
- W4287982092 hasConcept C166957645 @default.
- W4287982092 hasConcept C205649164 @default.
- W4287982092 hasConcept C33923547 @default.
- W4287982092 hasConcept C41008148 @default.
- W4287982092 hasConcept C549605437 @default.
- W4287982092 hasConcept C81363708 @default.
- W4287982092 hasConcept C88463610 @default.
- W4287982092 hasConcept C89600930 @default.
- W4287982092 hasConceptScore W4287982092C108583219 @default.
- W4287982092 hasConceptScore W4287982092C113174947 @default.
- W4287982092 hasConceptScore W4287982092C118518473 @default.
- W4287982092 hasConceptScore W4287982092C119857082 @default.
- W4287982092 hasConceptScore W4287982092C127413603 @default.
- W4287982092 hasConceptScore W4287982092C134306372 @default.
- W4287982092 hasConceptScore W4287982092C154945302 @default.
- W4287982092 hasConceptScore W4287982092C166957645 @default.
- W4287982092 hasConceptScore W4287982092C205649164 @default.
- W4287982092 hasConceptScore W4287982092C33923547 @default.
- W4287982092 hasConceptScore W4287982092C41008148 @default.
- W4287982092 hasConceptScore W4287982092C549605437 @default.
- W4287982092 hasConceptScore W4287982092C81363708 @default.
- W4287982092 hasConceptScore W4287982092C88463610 @default.
- W4287982092 hasConceptScore W4287982092C89600930 @default.
- W4287982092 hasLocation W42879820921 @default.
- W4287982092 hasOpenAccess W4287982092 @default.
- W4287982092 hasPrimaryLocation W42879820921 @default.
- W4287982092 hasRelatedWork W2731899572 @default.
- W4287982092 hasRelatedWork W2790662084 @default.
- W4287982092 hasRelatedWork W2999805992 @default.
- W4287982092 hasRelatedWork W3116150086 @default.
- W4287982092 hasRelatedWork W3133861977 @default.
- W4287982092 hasRelatedWork W4200173597 @default.
- W4287982092 hasRelatedWork W4291897433 @default.
- W4287982092 hasRelatedWork W4312417841 @default.
- W4287982092 hasRelatedWork W4321369474 @default.