Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287993607> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W4287993607 abstract "Quantum machine learning has the potential for broad industrial applications, and the development of quantum algorithms for improving the performance of neural networks is of particular interest given the central role they play in machine learning today. In this paper we present quantum algorithms for training and evaluating feedforward neural networks based on the canonical classical feedforward and backpropagation algorithms. Our algorithms rely on an efficient quantum subroutine for approximating the inner products between vectors in a robust way, and on implicitly storing large intermediate values in quantum random access memory for fast retrieval at later stages. The running times of our algorithms can be quadratically faster in the size of the network than their standard classical counterparts since they depend linearly on the number of neurons in the network, as opposed to the number of connections between neurons as in the classical case. This makes our algorithms suited for large-scale, highly-connected networks where the number of edges in the network dominates the classical algorithmic running time. Furthermore, networks trained by our quantum algorithm may have an intrinsic resilience to overfitting, as the algorithm naturally mimics the effects of classical techniques such as drop-out used to regularize networks. Our algorithms can also be used as the basis for new quantum-inspired classical algorithms which have the same dependence on the network dimensions as their quantum counterparts, but with quadratic overhead in other parameters that makes them relatively impractical." @default.
- W4287993607 created "2022-07-26" @default.
- W4287993607 creator A5002447654 @default.
- W4287993607 creator A5008663435 @default.
- W4287993607 creator A5024725897 @default.
- W4287993607 creator A5077333536 @default.
- W4287993607 date "2019-12-15" @default.
- W4287993607 modified "2023-09-23" @default.
- W4287993607 title "Quantum algorithms for feedforward neural networks" @default.
- W4287993607 hasPublicationYear "2019" @default.
- W4287993607 type Work @default.
- W4287993607 citedByCount "0" @default.
- W4287993607 crossrefType "posted-content" @default.
- W4287993607 hasAuthorship W4287993607A5002447654 @default.
- W4287993607 hasAuthorship W4287993607A5008663435 @default.
- W4287993607 hasAuthorship W4287993607A5024725897 @default.
- W4287993607 hasAuthorship W4287993607A5077333536 @default.
- W4287993607 hasBestOaLocation W42879936072 @default.
- W4287993607 hasConcept C11413529 @default.
- W4287993607 hasConcept C121332964 @default.
- W4287993607 hasConcept C127413603 @default.
- W4287993607 hasConcept C133731056 @default.
- W4287993607 hasConcept C154945302 @default.
- W4287993607 hasConcept C38858127 @default.
- W4287993607 hasConcept C41008148 @default.
- W4287993607 hasConcept C47702885 @default.
- W4287993607 hasConcept C50644808 @default.
- W4287993607 hasConcept C62520636 @default.
- W4287993607 hasConcept C84114770 @default.
- W4287993607 hasConceptScore W4287993607C11413529 @default.
- W4287993607 hasConceptScore W4287993607C121332964 @default.
- W4287993607 hasConceptScore W4287993607C127413603 @default.
- W4287993607 hasConceptScore W4287993607C133731056 @default.
- W4287993607 hasConceptScore W4287993607C154945302 @default.
- W4287993607 hasConceptScore W4287993607C38858127 @default.
- W4287993607 hasConceptScore W4287993607C41008148 @default.
- W4287993607 hasConceptScore W4287993607C47702885 @default.
- W4287993607 hasConceptScore W4287993607C50644808 @default.
- W4287993607 hasConceptScore W4287993607C62520636 @default.
- W4287993607 hasConceptScore W4287993607C84114770 @default.
- W4287993607 hasLocation W42879936071 @default.
- W4287993607 hasLocation W42879936072 @default.
- W4287993607 hasOpenAccess W4287993607 @default.
- W4287993607 hasPrimaryLocation W42879936071 @default.
- W4287993607 hasRelatedWork W1604847762 @default.
- W4287993607 hasRelatedWork W1874498466 @default.
- W4287993607 hasRelatedWork W1905705329 @default.
- W4287993607 hasRelatedWork W2014323024 @default.
- W4287993607 hasRelatedWork W2258992572 @default.
- W4287993607 hasRelatedWork W2359410228 @default.
- W4287993607 hasRelatedWork W2381165384 @default.
- W4287993607 hasRelatedWork W3170086649 @default.
- W4287993607 hasRelatedWork W3177279640 @default.
- W4287993607 hasRelatedWork W97768505 @default.
- W4287993607 isParatext "false" @default.
- W4287993607 isRetracted "false" @default.
- W4287993607 workType "article" @default.