Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287996954> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W4287996954 abstract "In this paper, we bound the number of solutions to a general Vinogradov system of equations $x_1^j+dots+x_s^j=y_1^j+dots+y_s^j$, $(1leq jleq k)$, as well as other related systems, in which the variables are required to satisfy digital restrictions in a given base. Specifically, our sets of permitted digits have the property that there are few representations of a natural number as sums of elements of the digit set -- the set of squares serving as a key example. We obtain better bounds using this additive structure than could be deduced purely from the size of the set of variables. In particular, when the digits are required to be squares, we obtain diagonal behaviour with $2k(k+1)$ variables." @default.
- W4287996954 created "2022-07-26" @default.
- W4287996954 creator A5088158517 @default.
- W4287996954 date "2019-12-09" @default.
- W4287996954 modified "2023-09-27" @default.
- W4287996954 title "Efficient congruencing in ellipsephic sets: the general case" @default.
- W4287996954 doi "https://doi.org/10.1142/s1793042123500070" @default.
- W4287996954 hasPublicationYear "2019" @default.
- W4287996954 type Work @default.
- W4287996954 citedByCount "0" @default.
- W4287996954 crossrefType "posted-content" @default.
- W4287996954 hasAuthorship W4287996954A5088158517 @default.
- W4287996954 hasBestOaLocation W42879969541 @default.
- W4287996954 hasConcept C111472728 @default.
- W4287996954 hasConcept C114614502 @default.
- W4287996954 hasConcept C118615104 @default.
- W4287996954 hasConcept C130367717 @default.
- W4287996954 hasConcept C134306372 @default.
- W4287996954 hasConcept C138885662 @default.
- W4287996954 hasConcept C177264268 @default.
- W4287996954 hasConcept C184264201 @default.
- W4287996954 hasConcept C189950617 @default.
- W4287996954 hasConcept C199360897 @default.
- W4287996954 hasConcept C2524010 @default.
- W4287996954 hasConcept C26517878 @default.
- W4287996954 hasConcept C33923547 @default.
- W4287996954 hasConcept C38652104 @default.
- W4287996954 hasConcept C41008148 @default.
- W4287996954 hasConcept C42058472 @default.
- W4287996954 hasConceptScore W4287996954C111472728 @default.
- W4287996954 hasConceptScore W4287996954C114614502 @default.
- W4287996954 hasConceptScore W4287996954C118615104 @default.
- W4287996954 hasConceptScore W4287996954C130367717 @default.
- W4287996954 hasConceptScore W4287996954C134306372 @default.
- W4287996954 hasConceptScore W4287996954C138885662 @default.
- W4287996954 hasConceptScore W4287996954C177264268 @default.
- W4287996954 hasConceptScore W4287996954C184264201 @default.
- W4287996954 hasConceptScore W4287996954C189950617 @default.
- W4287996954 hasConceptScore W4287996954C199360897 @default.
- W4287996954 hasConceptScore W4287996954C2524010 @default.
- W4287996954 hasConceptScore W4287996954C26517878 @default.
- W4287996954 hasConceptScore W4287996954C33923547 @default.
- W4287996954 hasConceptScore W4287996954C38652104 @default.
- W4287996954 hasConceptScore W4287996954C41008148 @default.
- W4287996954 hasConceptScore W4287996954C42058472 @default.
- W4287996954 hasLocation W42879969541 @default.
- W4287996954 hasOpenAccess W4287996954 @default.
- W4287996954 hasPrimaryLocation W42879969541 @default.
- W4287996954 hasRelatedWork W1540761923 @default.
- W4287996954 hasRelatedWork W1551815538 @default.
- W4287996954 hasRelatedWork W1978042415 @default.
- W4287996954 hasRelatedWork W2023757085 @default.
- W4287996954 hasRelatedWork W2212471609 @default.
- W4287996954 hasRelatedWork W2243687886 @default.
- W4287996954 hasRelatedWork W2325591417 @default.
- W4287996954 hasRelatedWork W285605535 @default.
- W4287996954 hasRelatedWork W4286316705 @default.
- W4287996954 hasRelatedWork W4287996954 @default.
- W4287996954 isParatext "false" @default.
- W4287996954 isRetracted "false" @default.
- W4287996954 workType "article" @default.