Matches in SemOpenAlex for { <https://semopenalex.org/work/W4287997516> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4287997516 abstract "Leonhard Euler likely developed his summation formula in 1732, and soon used it to estimate the sum of the reciprocal squares to 14 digits --- a value mathematicians had been competing to determine since Leibniz's astonishing discovery that the alternating sum of the reciprocal odd numbers is exactly $pi /4$. This competition came to be known as the Basel Problem, and Euler's approximation probably spurred his spectacular solution in the same year. Subsequently he connected his summation formula to Bernoulli numbers, and applied it to many other topics, masterfully circumventing that it almost always diverges. He applied it to estimate harmonic series partial sums, the gamma constant, and sums of logarithms, thereby calculating large factorials (Stirling's series) with ease. He even commented that his approximation of $ pi $ was surprisingly accurate for so little work. All this is beautifully presented in mature form in Euler's book Institutiones Calculi Differentialis. I have translated extensive selections for annotated publication as teaching source material in a book Mathematics Masterpieces; Further Chronicles by the Explorers, featuring original sources. I will summarize and illustrate Euler's achievements, including the connection to the search for formulas for sums of numerical powers. I will show in his own words Euler's idea for deriving his summation formula, and how he applied the formula to the sum of reciprocal squares and other situations, e.g., large factorials and binomial coefficients. Finally, I will discuss further mathematical questions, e.g., approximation of factorials, arising from Euler's writings." @default.
- W4287997516 created "2022-07-26" @default.
- W4287997516 creator A5016126128 @default.
- W4287997516 date "2019-12-07" @default.
- W4287997516 modified "2023-09-23" @default.
- W4287997516 title "Dances between continuous and discrete: Euler's summation formula" @default.
- W4287997516 doi "https://doi.org/10.48550/arxiv.1912.03527" @default.
- W4287997516 hasPublicationYear "2019" @default.
- W4287997516 type Work @default.
- W4287997516 citedByCount "0" @default.
- W4287997516 crossrefType "posted-content" @default.
- W4287997516 hasAuthorship W4287997516A5016126128 @default.
- W4287997516 hasBestOaLocation W42879975161 @default.
- W4287997516 hasConcept C114614502 @default.
- W4287997516 hasConcept C134306372 @default.
- W4287997516 hasConcept C136119220 @default.
- W4287997516 hasConcept C138885662 @default.
- W4287997516 hasConcept C143724316 @default.
- W4287997516 hasConcept C151730666 @default.
- W4287997516 hasConcept C180099792 @default.
- W4287997516 hasConcept C199343813 @default.
- W4287997516 hasConcept C202444582 @default.
- W4287997516 hasConcept C2777686260 @default.
- W4287997516 hasConcept C2777742833 @default.
- W4287997516 hasConcept C28581250 @default.
- W4287997516 hasConcept C33923547 @default.
- W4287997516 hasConcept C34718186 @default.
- W4287997516 hasConcept C35235930 @default.
- W4287997516 hasConcept C38409319 @default.
- W4287997516 hasConcept C39927690 @default.
- W4287997516 hasConcept C41895202 @default.
- W4287997516 hasConcept C48330753 @default.
- W4287997516 hasConcept C62884695 @default.
- W4287997516 hasConcept C71924100 @default.
- W4287997516 hasConcept C768646 @default.
- W4287997516 hasConcept C86803240 @default.
- W4287997516 hasConcept C93082080 @default.
- W4287997516 hasConceptScore W4287997516C114614502 @default.
- W4287997516 hasConceptScore W4287997516C134306372 @default.
- W4287997516 hasConceptScore W4287997516C136119220 @default.
- W4287997516 hasConceptScore W4287997516C138885662 @default.
- W4287997516 hasConceptScore W4287997516C143724316 @default.
- W4287997516 hasConceptScore W4287997516C151730666 @default.
- W4287997516 hasConceptScore W4287997516C180099792 @default.
- W4287997516 hasConceptScore W4287997516C199343813 @default.
- W4287997516 hasConceptScore W4287997516C202444582 @default.
- W4287997516 hasConceptScore W4287997516C2777686260 @default.
- W4287997516 hasConceptScore W4287997516C2777742833 @default.
- W4287997516 hasConceptScore W4287997516C28581250 @default.
- W4287997516 hasConceptScore W4287997516C33923547 @default.
- W4287997516 hasConceptScore W4287997516C34718186 @default.
- W4287997516 hasConceptScore W4287997516C35235930 @default.
- W4287997516 hasConceptScore W4287997516C38409319 @default.
- W4287997516 hasConceptScore W4287997516C39927690 @default.
- W4287997516 hasConceptScore W4287997516C41895202 @default.
- W4287997516 hasConceptScore W4287997516C48330753 @default.
- W4287997516 hasConceptScore W4287997516C62884695 @default.
- W4287997516 hasConceptScore W4287997516C71924100 @default.
- W4287997516 hasConceptScore W4287997516C768646 @default.
- W4287997516 hasConceptScore W4287997516C86803240 @default.
- W4287997516 hasConceptScore W4287997516C93082080 @default.
- W4287997516 hasLocation W42879975161 @default.
- W4287997516 hasOpenAccess W4287997516 @default.
- W4287997516 hasPrimaryLocation W42879975161 @default.
- W4287997516 hasRelatedWork W1587332544 @default.
- W4287997516 hasRelatedWork W1648607737 @default.
- W4287997516 hasRelatedWork W3038180736 @default.
- W4287997516 hasRelatedWork W3046612610 @default.
- W4287997516 hasRelatedWork W3136785859 @default.
- W4287997516 hasRelatedWork W3139224258 @default.
- W4287997516 hasRelatedWork W3198527753 @default.
- W4287997516 hasRelatedWork W3203624579 @default.
- W4287997516 hasRelatedWork W4287258961 @default.
- W4287997516 hasRelatedWork W4287997516 @default.
- W4287997516 isParatext "false" @default.
- W4287997516 isRetracted "false" @default.
- W4287997516 workType "article" @default.