Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288021320> ?p ?o ?g. }
Showing items 1 to 53 of
53
with 100 items per page.
- W4288021320 abstract "We study solutions to the integral equation [ omega(x) = Gamma - x^2 int_{0}^1 K(theta) , H(omega(xtheta)) , mathrm d theta ] where $Gamma>0$, $K$ is a weakly degenerate kernel satisfying, among other properties, $K(theta) sim k , (1-theta)^sigma$ as $theta to 1$ for constants $k>0$ and $sigma in (0, log_2 3 -1)$, $H$ denotes the Heaviside function, and $x in [0,infty)$. This equation arises from a reaction-diffusion equation describing Liesegang precipitation band patterns under certain simplifying assumptions. We argue that the integral equation is an analytically tractable paradigm for the clustering of precipitation rings observed in the full model. This problem is nontrivial as the right hand side fails a Lipschitz condition so that classical contraction mapping arguments do not apply. Our results are the following. Solutions to the integral equation, which initially feature a sequence of relatively open intervals on which $omega$ is positive (rings) or negative (gaps) break down beyond a finite interval $[0,x^*]$ in one of two possible ways. Either the sequence of rings accumulates at $x^*$ (non-degenerate breakdown) or the solution cannot be continued past one of its zeroes at all (degenerate breakdown). Moreover, we show that degenerate breakdown is possible within the class of kernels considered. Finally, we prove existence of generalized solutions which extend the integral equation past the point of breakdown." @default.
- W4288021320 created "2022-07-26" @default.
- W4288021320 creator A5012927472 @default.
- W4288021320 creator A5071820448 @default.
- W4288021320 date "2019-11-20" @default.
- W4288021320 modified "2023-10-16" @default.
- W4288021320 title "Breakdown of Liesegang precipitation bands in a simplified fast reaction limit of the Keller-Rubinow model" @default.
- W4288021320 doi "https://doi.org/10.48550/arxiv.1911.09084" @default.
- W4288021320 hasPublicationYear "2019" @default.
- W4288021320 type Work @default.
- W4288021320 citedByCount "0" @default.
- W4288021320 crossrefType "posted-content" @default.
- W4288021320 hasAuthorship W4288021320A5012927472 @default.
- W4288021320 hasAuthorship W4288021320A5071820448 @default.
- W4288021320 hasBestOaLocation W42880213201 @default.
- W4288021320 hasConcept C121332964 @default.
- W4288021320 hasConcept C134306372 @default.
- W4288021320 hasConcept C151201525 @default.
- W4288021320 hasConcept C22324862 @default.
- W4288021320 hasConcept C2778049214 @default.
- W4288021320 hasConcept C2779557605 @default.
- W4288021320 hasConcept C33923547 @default.
- W4288021320 hasConcept C37914503 @default.
- W4288021320 hasConcept C62520636 @default.
- W4288021320 hasConcept C72319582 @default.
- W4288021320 hasConcept C7980502 @default.
- W4288021320 hasConceptScore W4288021320C121332964 @default.
- W4288021320 hasConceptScore W4288021320C134306372 @default.
- W4288021320 hasConceptScore W4288021320C151201525 @default.
- W4288021320 hasConceptScore W4288021320C22324862 @default.
- W4288021320 hasConceptScore W4288021320C2778049214 @default.
- W4288021320 hasConceptScore W4288021320C2779557605 @default.
- W4288021320 hasConceptScore W4288021320C33923547 @default.
- W4288021320 hasConceptScore W4288021320C37914503 @default.
- W4288021320 hasConceptScore W4288021320C62520636 @default.
- W4288021320 hasConceptScore W4288021320C72319582 @default.
- W4288021320 hasConceptScore W4288021320C7980502 @default.
- W4288021320 hasLocation W42880213201 @default.
- W4288021320 hasOpenAccess W4288021320 @default.
- W4288021320 hasPrimaryLocation W42880213201 @default.
- W4288021320 hasRelatedWork W19835429 @default.
- W4288021320 hasRelatedWork W22069933 @default.
- W4288021320 hasRelatedWork W22857354 @default.
- W4288021320 hasRelatedWork W24004385 @default.
- W4288021320 hasRelatedWork W25157485 @default.
- W4288021320 hasRelatedWork W26573252 @default.
- W4288021320 hasRelatedWork W27346241 @default.
- W4288021320 hasRelatedWork W7373869 @default.
- W4288021320 hasRelatedWork W7584370 @default.
- W4288021320 hasRelatedWork W19361199 @default.
- W4288021320 isParatext "false" @default.
- W4288021320 isRetracted "false" @default.
- W4288021320 workType "article" @default.