Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288032970> ?p ?o ?g. }
- W4288032970 endingPage "111268" @default.
- W4288032970 startingPage "111268" @default.
- W4288032970 abstract "The problem of train wheel out-of-roundness (OOR) negatively affects both humans and the vehicle-track system, incl. reduced passenger comfort, rapid aging of vehicle/track components, increase in derailment risk, etc. It is therefore of interest to develop an on-board condition monitoring and fault diagnosis (CM&FD) technique for wheel OOR, which contributes not only to the maintenance decision-making of wheelsets but also to clarifying its triggering and evolution mechanisms. This paper first shows how to express the problem of CM&FD of our-of-round wheels as a machine learning problem. A deep learning model, OORNet, is then developed for CM&FD of out-of-round wheels. A vehicle-track multi-body dynamics model of a China railway high-speed (CRH) trailer is meanwhile built to produce a database consisting of vertical axlebox vibration accelerations caused by 2000 different wheel OOR curves. The simulated database is finally used to test the performance of OORNet, and its feasibility and superiority are verified." @default.
- W4288032970 created "2022-07-27" @default.
- W4288032970 creator A5039568481 @default.
- W4288032970 creator A5053440483 @default.
- W4288032970 creator A5055228901 @default.
- W4288032970 creator A5076492157 @default.
- W4288032970 date "2022-08-01" @default.
- W4288032970 modified "2023-10-18" @default.
- W4288032970 title "OORNet: A deep learning model for on-board condition monitoring and fault diagnosis of out-of-round wheels of high-speed trains" @default.
- W4288032970 cites W1202858614 @default.
- W4288032970 cites W1966778248 @default.
- W4288032970 cites W1992425217 @default.
- W4288032970 cites W1997914512 @default.
- W4288032970 cites W2004769931 @default.
- W4288032970 cites W2018523705 @default.
- W4288032970 cites W2020997493 @default.
- W4288032970 cites W2021540486 @default.
- W4288032970 cites W2030339760 @default.
- W4288032970 cites W2039146108 @default.
- W4288032970 cites W2046386493 @default.
- W4288032970 cites W2075866244 @default.
- W4288032970 cites W2076227741 @default.
- W4288032970 cites W2094061667 @default.
- W4288032970 cites W2094780301 @default.
- W4288032970 cites W2097007417 @default.
- W4288032970 cites W2100075834 @default.
- W4288032970 cites W2226856038 @default.
- W4288032970 cites W2461445497 @default.
- W4288032970 cites W2563926058 @default.
- W4288032970 cites W2618530766 @default.
- W4288032970 cites W2888770834 @default.
- W4288032970 cites W2912261128 @default.
- W4288032970 cites W2945937231 @default.
- W4288032970 cites W2953897306 @default.
- W4288032970 cites W2987246358 @default.
- W4288032970 cites W2997073788 @default.
- W4288032970 cites W3002183519 @default.
- W4288032970 cites W3010419881 @default.
- W4288032970 cites W3030095763 @default.
- W4288032970 cites W3043856581 @default.
- W4288032970 cites W3080408789 @default.
- W4288032970 cites W3089282373 @default.
- W4288032970 cites W3089543595 @default.
- W4288032970 cites W3094458518 @default.
- W4288032970 cites W3117920298 @default.
- W4288032970 cites W3121773403 @default.
- W4288032970 cites W3126545460 @default.
- W4288032970 cites W3129208677 @default.
- W4288032970 cites W3134119603 @default.
- W4288032970 cites W3165898261 @default.
- W4288032970 cites W3173408884 @default.
- W4288032970 cites W3188828077 @default.
- W4288032970 cites W3210820722 @default.
- W4288032970 cites W3216441072 @default.
- W4288032970 cites W4254508956 @default.
- W4288032970 doi "https://doi.org/10.1016/j.measurement.2022.111268" @default.
- W4288032970 hasPublicationYear "2022" @default.
- W4288032970 type Work @default.
- W4288032970 citedByCount "49" @default.
- W4288032970 countsByYear W42880329702022 @default.
- W4288032970 countsByYear W42880329702023 @default.
- W4288032970 crossrefType "journal-article" @default.
- W4288032970 hasAuthorship W4288032970A5039568481 @default.
- W4288032970 hasAuthorship W4288032970A5053440483 @default.
- W4288032970 hasAuthorship W4288032970A5055228901 @default.
- W4288032970 hasAuthorship W4288032970A5076492157 @default.
- W4288032970 hasConcept C121332964 @default.
- W4288032970 hasConcept C127313418 @default.
- W4288032970 hasConcept C127413603 @default.
- W4288032970 hasConcept C165205528 @default.
- W4288032970 hasConcept C171146098 @default.
- W4288032970 hasConcept C175551986 @default.
- W4288032970 hasConcept C190839683 @default.
- W4288032970 hasConcept C197090313 @default.
- W4288032970 hasConcept C198394728 @default.
- W4288032970 hasConcept C205649164 @default.
- W4288032970 hasConcept C24890656 @default.
- W4288032970 hasConcept C2779101595 @default.
- W4288032970 hasConcept C41008148 @default.
- W4288032970 hasConcept C44154836 @default.
- W4288032970 hasConcept C58640448 @default.
- W4288032970 hasConcept C66938386 @default.
- W4288032970 hasConcept C78519656 @default.
- W4288032970 hasConcept C89992363 @default.
- W4288032970 hasConceptScore W4288032970C121332964 @default.
- W4288032970 hasConceptScore W4288032970C127313418 @default.
- W4288032970 hasConceptScore W4288032970C127413603 @default.
- W4288032970 hasConceptScore W4288032970C165205528 @default.
- W4288032970 hasConceptScore W4288032970C171146098 @default.
- W4288032970 hasConceptScore W4288032970C175551986 @default.
- W4288032970 hasConceptScore W4288032970C190839683 @default.
- W4288032970 hasConceptScore W4288032970C197090313 @default.
- W4288032970 hasConceptScore W4288032970C198394728 @default.
- W4288032970 hasConceptScore W4288032970C205649164 @default.
- W4288032970 hasConceptScore W4288032970C24890656 @default.
- W4288032970 hasConceptScore W4288032970C2779101595 @default.
- W4288032970 hasConceptScore W4288032970C41008148 @default.
- W4288032970 hasConceptScore W4288032970C44154836 @default.