Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288033475> ?p ?o ?g. }
- W4288033475 abstract "Endometrial cancer (EC) is a prevalent uterine cancer that remains a major contributor to cancer-associated morbidity and mortality. EC diagnosed at advanced stages shows a poor therapeutic response. The clinically utilized EC diagnostic approaches are costly, time-consuming, and are not readily available to all patients. The rapid growth in computational biology has enticed substantial research attention from both data scientists and oncologists, leading to the development of rapid and cost-effective computer-aided cancer surveillance systems. Machine learning (ML), a subcategory of artificial intelligence, provides opportunities for drug discovery, early cancer diagnosis, effective treatment, and choice of treatment modalities. The application of ML approaches in EC diagnosis, therapies, and prognosis may be particularly relevant. Considering the significance of customized treatment and the growing trend of using ML approaches in cancer prediction and monitoring, a critical survey of ML utility in EC may provide impetus research in EC and assist oncologists, molecular biologists, biomedical engineers, and bioinformaticians to further collaborative research in EC. In this review, an overview of EC along with risk factors and diagnostic methods is discussed, followed by a comprehensive analysis of the potential ML modalities for prevention, screening, detection, and prognosis of EC patients." @default.
- W4288033475 created "2022-07-27" @default.
- W4288033475 creator A5005553955 @default.
- W4288033475 creator A5014040365 @default.
- W4288033475 creator A5017758464 @default.
- W4288033475 creator A5048254502 @default.
- W4288033475 creator A5051119189 @default.
- W4288033475 creator A5057894857 @default.
- W4288033475 creator A5070538645 @default.
- W4288033475 creator A5075577648 @default.
- W4288033475 date "2022-07-27" @default.
- W4288033475 modified "2023-09-30" @default.
- W4288033475 title "Machine Learning for Endometrial Cancer Prediction and Prognostication" @default.
- W4288033475 cites W1044927166 @default.
- W4288033475 cites W1179908708 @default.
- W4288033475 cites W1498436455 @default.
- W4288033475 cites W1500690868 @default.
- W4288033475 cites W1530699444 @default.
- W4288033475 cites W1553710701 @default.
- W4288033475 cites W1563938718 @default.
- W4288033475 cites W1659842140 @default.
- W4288033475 cites W18240430 @default.
- W4288033475 cites W188939860 @default.
- W4288033475 cites W1889405671 @default.
- W4288033475 cites W1964260407 @default.
- W4288033475 cites W1965187929 @default.
- W4288033475 cites W1965726787 @default.
- W4288033475 cites W1966716734 @default.
- W4288033475 cites W1968201285 @default.
- W4288033475 cites W1971799300 @default.
- W4288033475 cites W1984047604 @default.
- W4288033475 cites W1984651881 @default.
- W4288033475 cites W1992926925 @default.
- W4288033475 cites W1997015143 @default.
- W4288033475 cites W1997192661 @default.
- W4288033475 cites W1999408896 @default.
- W4288033475 cites W2003056152 @default.
- W4288033475 cites W2006837826 @default.
- W4288033475 cites W2034585059 @default.
- W4288033475 cites W2041440766 @default.
- W4288033475 cites W2044869180 @default.
- W4288033475 cites W2047753526 @default.
- W4288033475 cites W2049916704 @default.
- W4288033475 cites W2051345053 @default.
- W4288033475 cites W2068141066 @default.
- W4288033475 cites W2079525162 @default.
- W4288033475 cites W2085394752 @default.
- W4288033475 cites W2090310702 @default.
- W4288033475 cites W2095600768 @default.
- W4288033475 cites W2102238462 @default.
- W4288033475 cites W2109870736 @default.
- W4288033475 cites W2116465319 @default.
- W4288033475 cites W2118978333 @default.
- W4288033475 cites W2119191234 @default.
- W4288033475 cites W2121429001 @default.
- W4288033475 cites W2123034092 @default.
- W4288033475 cites W2125256338 @default.
- W4288033475 cites W2126449672 @default.
- W4288033475 cites W2127532437 @default.
- W4288033475 cites W2137767404 @default.
- W4288033475 cites W2138516811 @default.
- W4288033475 cites W2145117334 @default.
- W4288033475 cites W2153562115 @default.
- W4288033475 cites W2157820340 @default.
- W4288033475 cites W2166339706 @default.
- W4288033475 cites W2168219324 @default.
- W4288033475 cites W2177870565 @default.
- W4288033475 cites W2185449028 @default.
- W4288033475 cites W2264382999 @default.
- W4288033475 cites W2276530525 @default.
- W4288033475 cites W2321934915 @default.
- W4288033475 cites W2324377928 @default.
- W4288033475 cites W2332408802 @default.
- W4288033475 cites W2398547309 @default.
- W4288033475 cites W2464708700 @default.
- W4288033475 cites W2510473864 @default.
- W4288033475 cites W2512906913 @default.
- W4288033475 cites W2532097202 @default.
- W4288033475 cites W2536120357 @default.
- W4288033475 cites W2548000951 @default.
- W4288033475 cites W2557738935 @default.
- W4288033475 cites W2560287982 @default.
- W4288033475 cites W2561389966 @default.
- W4288033475 cites W2564387919 @default.
- W4288033475 cites W2566141610 @default.
- W4288033475 cites W2581082771 @default.
- W4288033475 cites W2584113350 @default.
- W4288033475 cites W2734220714 @default.
- W4288033475 cites W2751014791 @default.
- W4288033475 cites W2761181345 @default.
- W4288033475 cites W2768568008 @default.
- W4288033475 cites W2778455075 @default.
- W4288033475 cites W2789811819 @default.
- W4288033475 cites W2802896169 @default.
- W4288033475 cites W2806358416 @default.
- W4288033475 cites W2810507672 @default.
- W4288033475 cites W2885550086 @default.
- W4288033475 cites W2886522935 @default.
- W4288033475 cites W2896817483 @default.
- W4288033475 cites W2897124762 @default.