Matches in SemOpenAlex for { <https://semopenalex.org/work/W4288034179> ?p ?o ?g. }
- W4288034179 endingPage "084021" @default.
- W4288034179 startingPage "084021" @default.
- W4288034179 abstract "Abstract High- and low pressure systems of the large-scale atmospheric circulation in the mid-latitudes drive European weather and climate. Potential future changes in the occurrence of circulation types are highly relevant for society. Classifying the highly dynamic atmospheric circulation into discrete classes of circulation types helps to categorize the linkages between atmospheric forcing and surface conditions (e.g. extreme events). Previous studies have revealed a high internal variability of projected changes of circulation types. Dealing with this high internal variability requires the employment of a single-model initial-condition large ensemble (SMILE) and an automated classification method, which can be applied to large climate data sets. One of the most established classifications in Europe are the 29 subjective circulation types called Grosswetterlagen by Hess & Brezowsky (HB circulation types). We developed, in the first analysis of its kind, an automated version of this subjective classification using deep learning. Our classifier reaches an overall accuracy of 41.1% on the test sets of nested cross-validation. It outperforms the state-of-the-art automatization of the HB circulation types in 20 of the 29 classes. We apply the deep learning classifier to the SMHI-LENS, a SMILE of the Coupled Model Intercomparison Project phase 6, composed of 50 members of the EC-Earth3 model under the SSP37.0 scenario. For the analysis of future frequency changes of the 29 circulation types, we use the signal-to-noise ratio to discriminate the climate change signal from the noise of internal variability. Using a 5%-significance level, we find significant frequency changes in 69% of the circulation types when comparing the future (2071–2100) to a reference period (1991–2020)." @default.
- W4288034179 created "2022-07-27" @default.
- W4288034179 creator A5022012759 @default.
- W4288034179 creator A5035969125 @default.
- W4288034179 creator A5039086570 @default.
- W4288034179 creator A5057589615 @default.
- W4288034179 creator A5067248213 @default.
- W4288034179 date "2022-07-27" @default.
- W4288034179 modified "2023-10-18" @default.
- W4288034179 title "A deep learning based classification of atmospheric circulation types over Europe: projection of future changes in a CMIP6 large ensemble" @default.
- W4288034179 cites W1974470230 @default.
- W4288034179 cites W1986629766 @default.
- W4288034179 cites W2009032484 @default.
- W4288034179 cites W2052872719 @default.
- W4288034179 cites W2053693629 @default.
- W4288034179 cites W2055130292 @default.
- W4288034179 cites W2057823064 @default.
- W4288034179 cites W2063698539 @default.
- W4288034179 cites W2078273427 @default.
- W4288034179 cites W2090249381 @default.
- W4288034179 cites W2117456807 @default.
- W4288034179 cites W2131859067 @default.
- W4288034179 cites W2154776925 @default.
- W4288034179 cites W2394879936 @default.
- W4288034179 cites W2528560933 @default.
- W4288034179 cites W2547753504 @default.
- W4288034179 cites W2611349564 @default.
- W4288034179 cites W2756253087 @default.
- W4288034179 cites W2962780982 @default.
- W4288034179 cites W2990621239 @default.
- W4288034179 cites W2991377956 @default.
- W4288034179 cites W3003473795 @default.
- W4288034179 cites W3010717477 @default.
- W4288034179 cites W3014438495 @default.
- W4288034179 cites W3016618784 @default.
- W4288034179 cites W3040387795 @default.
- W4288034179 cites W3087260480 @default.
- W4288034179 cites W3092282926 @default.
- W4288034179 cites W3096742886 @default.
- W4288034179 cites W3142713597 @default.
- W4288034179 cites W3157892829 @default.
- W4288034179 cites W3217400646 @default.
- W4288034179 cites W4226178852 @default.
- W4288034179 doi "https://doi.org/10.1088/1748-9326/ac8068" @default.
- W4288034179 hasPublicationYear "2022" @default.
- W4288034179 type Work @default.
- W4288034179 citedByCount "2" @default.
- W4288034179 countsByYear W42880341792023 @default.
- W4288034179 crossrefType "journal-article" @default.
- W4288034179 hasAuthorship W4288034179A5022012759 @default.
- W4288034179 hasAuthorship W4288034179A5035969125 @default.
- W4288034179 hasAuthorship W4288034179A5039086570 @default.
- W4288034179 hasAuthorship W4288034179A5057589615 @default.
- W4288034179 hasAuthorship W4288034179A5067248213 @default.
- W4288034179 hasBestOaLocation W42880341791 @default.
- W4288034179 hasConcept C11111821 @default.
- W4288034179 hasConcept C111368507 @default.
- W4288034179 hasConcept C121332964 @default.
- W4288034179 hasConcept C127313418 @default.
- W4288034179 hasConcept C132651083 @default.
- W4288034179 hasConcept C141452985 @default.
- W4288034179 hasConcept C150284090 @default.
- W4288034179 hasConcept C153294291 @default.
- W4288034179 hasConcept C154945302 @default.
- W4288034179 hasConcept C205649164 @default.
- W4288034179 hasConcept C39432304 @default.
- W4288034179 hasConcept C41008148 @default.
- W4288034179 hasConcept C49204034 @default.
- W4288034179 hasConcept C94124525 @default.
- W4288034179 hasConcept C95623464 @default.
- W4288034179 hasConcept C97355855 @default.
- W4288034179 hasConceptScore W4288034179C11111821 @default.
- W4288034179 hasConceptScore W4288034179C111368507 @default.
- W4288034179 hasConceptScore W4288034179C121332964 @default.
- W4288034179 hasConceptScore W4288034179C127313418 @default.
- W4288034179 hasConceptScore W4288034179C132651083 @default.
- W4288034179 hasConceptScore W4288034179C141452985 @default.
- W4288034179 hasConceptScore W4288034179C150284090 @default.
- W4288034179 hasConceptScore W4288034179C153294291 @default.
- W4288034179 hasConceptScore W4288034179C154945302 @default.
- W4288034179 hasConceptScore W4288034179C205649164 @default.
- W4288034179 hasConceptScore W4288034179C39432304 @default.
- W4288034179 hasConceptScore W4288034179C41008148 @default.
- W4288034179 hasConceptScore W4288034179C49204034 @default.
- W4288034179 hasConceptScore W4288034179C94124525 @default.
- W4288034179 hasConceptScore W4288034179C95623464 @default.
- W4288034179 hasConceptScore W4288034179C97355855 @default.
- W4288034179 hasIssue "8" @default.
- W4288034179 hasLocation W42880341791 @default.
- W4288034179 hasLocation W42880341792 @default.
- W4288034179 hasOpenAccess W4288034179 @default.
- W4288034179 hasPrimaryLocation W42880341791 @default.
- W4288034179 hasRelatedWork W1482835529 @default.
- W4288034179 hasRelatedWork W2013982887 @default.
- W4288034179 hasRelatedWork W2020187895 @default.
- W4288034179 hasRelatedWork W2029483631 @default.
- W4288034179 hasRelatedWork W2032118830 @default.
- W4288034179 hasRelatedWork W2063379316 @default.